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A Point Lattice.



Crystallography 

C. Crystal Structures

3. Two Different Atoms per Lattice Point

a. Cesium Chloride Structure

Primitive cubic (P) lattice + 2 atoms ---> CsCl structure



Cesium chloride (CsCl) structure.



Crystallography 

C. Crystal Structures

3. Two Different Atoms per Lattice Point

a. Cesium Chloride Structure

Cs is at 0, 0, 0 and a Cl at 1/2, 1/2, 1/2 to form the 

basis.

Why is this primitive cubic and not bcc? If we translate Cs at 0, 0, 0 

to 1/2, 1/2, 1/2, this position is not an equivalent.

The CsCl is two interpenetrating cubes, one with Cs atoms and one 

with Cl atoms, all displaced 1/2, 1/2, 1/2 with respect to each 

other.



Crystallography 

C. Crystal Structures

3. Two Different Atoms per Lattice Point

b. Sodium Chloride Structure or Rocksalt 

Structure

Face-centered cubic (F) lattice + 2 atoms ---> 

Rocksalt structure

There are a basis of two atoms at 0, 0, 0, for Na and 

1/2, 0, 0 for Cl.



Sodium Chloride (NaCl) structure.



Crystallography 

C. Crystal Structures

3. Two Different Atoms per Lattice Point

b. Sodium Chloride Structure or Rocksalt Structure

Na at 0, 0, 0 1/2, 1/2, 0 1/2, 0, 1/2 0, 1/2, 1/2

Cl at 1/2, 0, 0 0, 1/2, 0 0, 0, 1/2 1/2, 1/2, 1/2

Na atoms are in a face centered cubic arrangement, translate 1/2 

and Cl is also in face centered cubic arrangement.

What would the planar representation look like?



Planar representation of sodium chloride structure.



Crystallography 

C. Crystal Structures

3. Two Different Atoms per Lattice Point

c. Zinc Blende Structure (Sphalerite) (ZnS)

Face-centered cubic (F) lattice  +  2 atoms  --->  Zinc blende structure



Zinc Blende (ZnS) structure.



Crystallography 

C. Crystal Structures

3. Two Different Atoms per Lattice Point

c. Zinc Blende Structure (Sphalerite) (ZnS)

S atoms at 0, 0, 0 1/2, 1/2, 0 1/2, 0, 1/2 0, 1/2, 1/2

Zn atoms at 1/4, 1/4, 1/4 3/4, 3/4, 1/4 3/4, 1/4, 3/4 1/4, 3/4, 3/4

For S start at 0, 0, 0 and do a fcc translation

For Zn start at 1/4, 1/4, 1/4 and do a fcc translation



Crystallography 

C. Crystal Structures

4. More complex structures

Can have more than two atoms associated with each lattice 

point.

Common example:

Face centered cubic lattice + 3 atoms ---> Fluorite structure



Fluorite Structure.



Crystallography 

C. Crystal Structures

4. More complex structures

Name of Structure Corresponding Materials Other Materials

Rocksalt NaCl KCl, LiF, MgO, TiN

Zinc blende ZnS BeO, GaAs, b-SiC

Rutile TiO2 GeO2, SnO2

Corundum Al2O3 Fe2O3, Cr2O3

Wurtzite ZnS ZnO, AlN, a-SiC

Perovskite CaTiO3 BaTiO3, SrTiO3

Spinel MgAl2O4 FeAl2O4, ZnAl2O4



Crystallography 

C. Crystal Structures

4. More complex structures

http://staff.aist.go.jp/nomura-k/english/itscgallary-e.htm

http://staff.aist.go.jp/nomura-k/english/itscgallary-e.htm


Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes
Direction or vectors are denoted by [uvw]

[     ]  - denotes an individual direction. 

a

b

c



Crystallography 

Start at A (0,0,0) origin and travel in a vector until you reach B.

So the direction of the line is [1 0 0]

The family of directions is denoted by <     >

<1 0 0>  - is the family of directions for all the individual directions.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

cos q = (uu' + vv' + ww')/(u2 + v2 + w2)1/2(u'2 + v'2+ w'2)1/2

Example: What is the angle between [110] and [111]?

q = arc cos (1x1 + 1x1 + 0x1)/ (12 + 12 + 02)1/2(12 +12 + 12)1/2

= 35.3o



Indices of Directions



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Miller Indices

A notation used to describe various planes within a 
crystal lattice.

Steps to determine Miller Indices

1) Identify the points at which the plane intersects the a, b, c 
axes. Intercept is measured in terms of fractions or multiples of 
the lattice parameter.

2) Take reciprocals of the intercepts. (Get rid of infinity)

3) Multiply to get a whole number (Clear the fractions)

4) Enclose numbers in (   ). Represent negative numbers with a 
bar (bar one).



Practice:

Plane A:

a b c

Step 1. Intercepts 1 1 1

Step 2. Reciprocals 1 1 1

Step 3. Clear fractions 1 1 1

Step 4. Miller Indice (1 1 1)



Practice:

Plane B:

a b c

Step 1. Intercepts 1 2 ∞

Step 2. Reciprocals 1 1/2 0

Step 3. Clear fractions 2 1 0

Step 4. Miller Indice (2 1 0)



Example: Cubic System

a b c

Step 1. Intercepts 1 ∞ ∞

Step 2. Reciprocals 1 0 0

Step 3. Clear fractions 1 0 0

Step 4. Miller Indice (1 0 0)

This is the surface plane of the cubic crystal.



Example: Cubic System

a b c

Step 1. Intercepts 1 1 ∞

Step 2. Reciprocals 1 1 0

Step 3. Clear fractions 1 1 0

Step 4. Miller Indice (1 1 0)



Example: Cubic System

a b v

Step 1. Intercepts 1 1 1

Step 2. Reciprocals 1 1 1

Step 3. Clear fractions 1 1 1

Step 4. Miller Indice (1 1 1)



Example: Cubic System

a b c

Step 1. Intercepts 1/2 ∞ ∞

Step 2. Reciprocals 2 0 0

Step 3. Clear fractions 2 0 0

Step 4. Miller Indice (2 0 0)

Notice that the (2 0 0) reflection is a multiple of (1 0 0).



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

In the cubic system there are six faces 
equivalent to (1 0 0).

This set is related and denoted by {1 0 0} -
this set is called a family of planes.

{     }  - denotes a family of planes        

(     )  - denotes an individual plane

The six planes in the {1 0 0} family are:

(1 0 0)   (0 1 0)   (0 0 1)   (1 0 0)   (0 1 0)   (0 0 1)

11



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes
The number of planes in a family that have the same 

spacing is called the multiplicity factor. (This factor 

determines the intensity of the reflection).

Notice the (2 0 0) plane is not in the same family as 

the (1 0 0) plane. It is parallel to the (1 0 0) plane but 

the spacing is 1/2 the spacing for the (1 0 0) plane.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Shapes

Crystals often have facets which correspond 
to low index planes.

For instance, crystals with cubic symmetry 

(4 – 3 fold axis) can have the form of an 
octahedron or cube.

Since different faces have different 
arrangement of atoms, then the different 
faces will have different reactivities.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Example:

If you crystallize NaCl with H2O you get a cubic 

shaped crystal.

If you crystallize NaCl with urea you get an 

octahedron shape crystal.

Why? – urea acts to inhibit the growth of the {111} 

faces, so the {100} faces grow faster and grow out.

A general rule: the surfaces that are most prominent 

in a crystal are those that grow most slowly.



Crystallography 

Geometry and the structure of crystals
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Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Shapes

As seen in the previous example, the overall crystal 

may have the same or different shape than it’s unit 

cell.

Planes of low indices have the largest density of 

lattice points and the law of crystal growth states 

such planes develop at the expense of planes with 

high indices and few lattice points.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Shapes

Law of rational indices – states that the indices of 
naturally developed crystal faces are always 
composed of whole numbers, and rarely exceed 3 or 
4.

Example: Faces of form {100}, {111}, {210}, etc are 
observed but not faces as {510}, {719}, etc. 

An exception is seen in materials work for some 
electrodeposits or other artificially grown deposits 
resulting in a grains in a polycrystalline mass.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Shapes

Also when considering surfaces, one rule of thumb,  
is that the most stable solid surfaces are those with: 

1. a high surface atom density 

2. surface atoms of high coordination number 

(Note - the two factors are obviously not independent, but are 
inevitably strongly correlated). 

Consequently, for example, if we consider the 
individual surface planes of an fcc metal, then we 
would expect the stability to decrease in the order 

fcc (111) > fcc (100) > fcc (110)



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects

Imperfections in the periodic structure of the 

individual grains of crystalline solids.

Classified as point, line, and planar defects. 

Can have large effect on the properties of the 

material (mechanical, optical, electrical, etc).



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects
Point defects – substitutional or interstitial impurities. 

Vegard’s law – volume of unit cells in a substitutional solid 
solution is linearly proportional to  the fraction of sites 
substituted.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Vegard’s law



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects

Linear defects – edge and screw dislocations. Large 
strains and very high dislocation densities can occur 
when metals are forged, rolled, machines, shot 
peening, or ball milling.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects
Linear defects – edge dislocations.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects
Linear defects – screw dislocations.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects

Planar defects – stacking faults and twins

Stacking faults – the normal stacking sequence of 

the close packed planes can be disrupted.

Example: For the fcc structure, the normal stacking 

sequence is ….ABCABCABC… but can become 

…ABCAB*ABC… or …ABCA*CABCA…



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects

Twinned crystals – may be described by the 

symmetry operation to bring one in coincidence with 

the other.

One kind involves a 180o rotation about an axis 

called the twin axis, the other involves a reflection 

across a plane called the twin plane.

The plane where the two parts of the twinned crystal 

unite is called the composition plane.



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

Crystal Defects

Kinds of twins:

1. Annealing twins – occur in fcc metals and 
alloys which have been cold worked and then 
annealed to cause recrystallization. (Cu, Ni, 
a-brass, Al,…)

2. Deformation twins – occur in deformed hcp 
metals (Zn, Mg, Be,…) and bcc metals. (a-Fe, 
W,…)





Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes 

Surface Crystal Defects
Relaxation is a small and subtle rearrangement of the surface layers which may 

nevertheless be significant energetically, and seems to be commonplace for 

metal surfaces. It involves adjustments in the layer spacings perpendicular to 

the surface , there is no change either in the periodicity parallel to the surface 

or to the symmetry of the surface.  

Unrelaxed Surface Relaxed Surface (d1-2 < dbulk )



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes 
Surface Crystal Defects
The Reconstruction of surfaces involves larger (yet still atomic scale) displacements 

of the surface atoms. It occurs with many of the less stable metal surfaces (e.g. 
it is frequently observed on fcc(110) surfaces), but is much more prevalent on 
semiconductor surfaces. 
Unlike relaxation, the phenomenon of reconstruction involves a change in the 
periodicity of the surface structure - the diagram below shows a surface, 
viewed from the side, which corresponds to an unreconstructed termination of 
the bulk structure. 



Crystallography 

Geometry and the structure of crystals

E. Interplanar Spacings

The distance between an equivalent set of planes is 

defined as dhkl - the interplanar spacing. 

The interplanar spacing, dhkl, measured at right 

angles to the planes, is a function both of the plane 

indices (hkl) and the lattice constants (a,b,c,a,b,g).

The distance can be directly determined by x-ray 

diffraction.



The dhkl interplanar spacing.

For a cubic system:
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Crystallography 

Geometry and the structure of crystals

E. Interplanar Spacings
For an orthorhombic system:

1/d2 = h2/a2 + k2/b2 + l2/c2

Example: Calculate the d-spacings for an orthorhombic 
cell for a = 3Å, b = 4 Å, and c = 5Å if the reflections 
are 001, 010, 100, 011 and 101?

001 5

010 4

100 3

011 3.12

101 2.57



Crystallography 

Geometry and the structure of crystals

E. Interplanar Spacings

Planes of large spacings have low indices and pass 

through a high density of lattice points.



Crystallography 

Geometry and the structure of crystals

E. Interplanar Spacings

Planar density is the density of atoms on a particular 

plane, and can be determined by:

planar density = number of atoms on the plane/ area of the plane



Crystallography 

Geometry and the structure of crystals

E. Interplanar Spacings

Density = mass/volume

= formula weight/molar volume

= FW/(volume of unit cell)N

= (FW  x  Z) / (V  x  N)

Z = # of formula units per unit cell



Crystallography 

Geometry and the structure of crystals

Homework #3:

A metal oxide has the fluorite structure. It therefore 

has the fcc Bravais lattice with four formula units per 

unit cell. The density is 7.214 g/cm3. The distance 

between (521) plane is 0.09879 nm.

a. What is the lattice parameter?

b. What is the spacing between the 111 planes?

c. What is the formula weight of the material?

d. What is the angle between the [741] and [123] directions?

e. What is the material?



Crystallography 
Read Chapter 2 from textbooks:

• X-ray Diffraction, A Practical Approach by Norton

• Introduction to X-ray powder Diffractometry by Jenkins and Synder

• Elements of X-ray Diffraction by Cullity and Stock

Homework 2: Due next Tuesday

Define the fcc cell. What is N? Draw the crystal and planar representation. 

Define the diamond cubic structure cell. What is N? Draw the crystal and planar 

representation. 

Do UNT Bridge Module:

“Radiation Safety Training”

Homework 3: Due next Tuesday

If you find any websites not using outdated java, that have some cool interacting 

software for crystal structures, or miller indices, or etc.. please send to me for xtra

credit.



Group Assignments:

Group 1: Group 2:

Group 3: Group 4:



Crystallography 

Lab Assignment: 

Lab 1: Safety and Sample Preparation

Tuesday, Sept. 8:00 am

Group 1

Tuesday, Sept. 8:30 am

Group 2

Thursday Sept. 8:00 am

Group 3

Thursday Sept. 8:30 am

Group 4


