# Biol/Chem 4900/4912

Forensic Internship

Lecture 5

**Quality Assurance** 

A set of activities that ensures that development and/or maintenance processes are adequate in order for a system to meet its objectives.

**Quality Control** 

A set of activities designed to evaluate the developed product.



#### **Quality Assurance Examples**

- Develop and validate methods for analyzing and producing products to ensure they meet specifications and document those methods in standard operating procedures (SOPs) and production records
- Audit quality control, production and sales functions, and other records to ensure compliance with SOPs
- Assist quality control staff with troubleshooting and resolving unusual problems
- Develop quality metrics and assess trends for product or process implications
- Develop and implement improvements to existing sample and data analysis techniques
- Critically evaluate current processes and continually identify ways to save time and money without sacrificing product quality
  - Investigate product, and process deviations, identify root cause, and develop corrective and preventative actions

#### **Quality Control Examples**

- Set up, troubleshoot, and maintain equipment, including calibration logs and training records
- Prepare samples in accordance with standard operating procedures
- Conduct analytical tests on starting materials, ingredients inprocess samples and finished products, following specific protocols
- Provide timely and high-quality data reports that document test results
- Recheck out-of-specification results, using alternative methods if necessary
- Test products for long-term stability or stability under various conditions
- Interface, maintain, and populate a Laboratory Information Management System

Why QA/QC matters

- ► Large percentage of a nations GNP (>5%)
- Need reliable data for political debates and agencies (i.e, global warming, fracking, contaminated water, forensic evidence)
  - Wrong forensic analysis wrongful conviction
  - Undetected water contamination (Flint, Michigan, files false reports)
  - Local pharmaceutical laboratories (raided FBI)

Chemist must choose the correct analytical method or instrument to solve a problem.

In order to do this, the chemist must understand a wide variety of methods and instruments and the limitations of each one.

To correctly select the method or instrument, the problem must be clearly defined.

- 1. What accuracy is required?
- 2. How much sample is available?
- 3. What is the concentration range of the analyte?
- 4. What components of the sample will cause interference?
- 5. What are the physical and chemical properties of the sample matrix?
- 6. How many samples are to be analyzed?

Measurements made in one laboratory must be repeatable in another laboratory.

How do we accomplish this?

- Need standards or Certified Reference Materials (CRMs).
- Need known calibration procedures
- Need common agreed upon procedures

Standards have been developed by a variety of national, international, and businesses.

Standards can refer to physical components or operating processes.

Physical:

- An Fe solution standard for AAS
- LaB<sub>6</sub> powder for XRD
- A calibrated 1 gr weight for a balance

Standards have been developed by a variety of national, international, and businesses.

Standards can refer to physical components or operating processes.

**Process:** 

- International Standard, ISO 90001:2000
  - Quality Management Systems Requirements
- Good Laboratory Practice (GLP)
- Am National Accreditation Board (ANAB)(ASCLD)

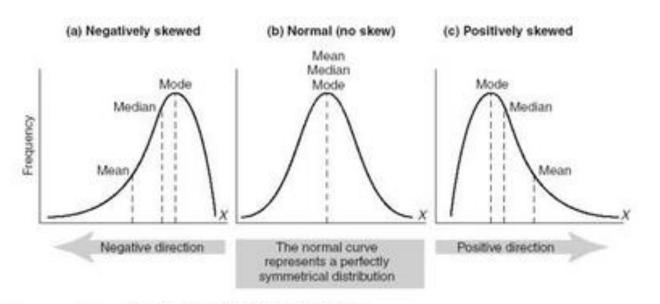
International Standard, ISO 90001:2000

Gives the requirements for a quality management system

Organization for Economic Co-operation and Development (OECD)

Developed GLP principles to promote development of quality test data

Quality assurance of analytical measurements results in a system comprising 5 independent elements.


- Assurance of measuring traceability of the obtained results
- Evaluation of uncertainty of the results
- Use of certified reference materials
- Participation in various interlaboratory comparisons
- Validation of the applied analytical procedures

To excel at QA/QC must understand and use statistical analysis.

- Correct equations must be used for the particular circumstance
- Review basic statistical analysis

**Distribution of measurements** 

- Normal distribution (Gaussian distribution)
  - Characterized by an expected value, a median, and a variance



Examples of normal and skewed distributions

Since we never have the entire distribution but a sample of the population, statistical parameters are used to describe the sample, these parameters are divided into basic groups:

Measure of location

- Measure of statistical dispersion
- Measure of asymmetry

#### Measure of location

- One value to represent the values of the population
- Can be mean, mode, median, etc

#### **Measure of dispersion**

- To determine differences between individual observations and mean value
- Can be range, variance, standard deviation, average deviation, coefficient of variance, etc

#### Measure of asymmetry

- An absolute value expressed as the difference between an arithmetic mean and a mode.
- Different instrumentation methods may have own unique approach, i.e., XRD (pearson VII), XPS, chromatography

| Criterion              | Figure of Merit                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------|
| 1. Precision           | Absolute standard deviation,<br>relative standard deviation,<br>coefficient of variation,<br>variance |
| 2. Bias                | Absolute systematic error, relative systematic error                                                  |
| 3. Sensitivity         | Calibration sensitivity,<br>analytical sensitivity                                                    |
| 4. Detection limit     | Blank plus three times standard deviation of a blank                                                  |
| 5. Concentration range | Concentration limit of<br>quantitation (LOQ) to<br>concentration limit of<br>linearity (LOL)          |
| 6. Selectivity         | Coefficient of selectivity                                                                            |

# **TABLE 1-3**Numerical Criteria for SelectingAnalytical Methods

#### Precision

# **TABLE 1-5**Figures of Merit for Precision<br/>of Analytical Methods

| Terms                                  | Definition*                                                      |
|----------------------------------------|------------------------------------------------------------------|
| Absolute standard deviation, s         | $s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$ |
| Relative standard deviation (RSD)      | $RSD = \frac{s}{\overline{x}}$                                   |
| Standard deviation of the, mean, $s_m$ | $s_m = s/\sqrt{N}$                                               |
| Coefficient of variation, CV           | $CV = \frac{s}{x} \times 100\%$                                  |
| Variance                               | s <sup>2</sup>                                                   |

 $x_i =$  numerical value of the *i*th measurement.

$$\bar{x}$$
 = mean of N measurements =  $\frac{\sum_{i=1}^{N} x_i}{N}$ 

#### Bias

Bias =  $\mu$  -  $x_t$ 

- $\boldsymbol{\mu}$  population mean
- $\mathbf{x}_{t}$  true concentration

#### Bias

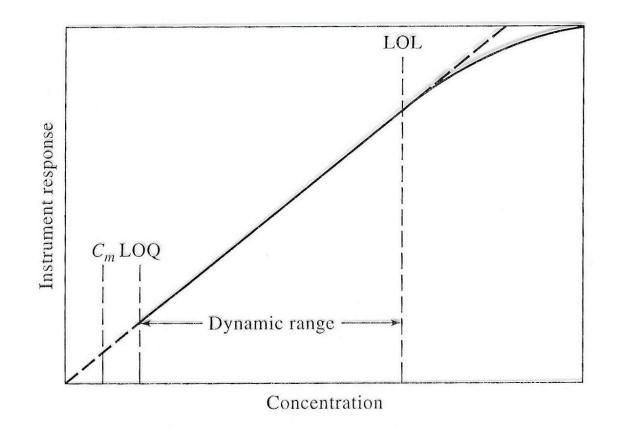
Sample – finite number of experimental observations (all the replicate).

The <u>sample</u> is a fraction of the infinite number of observations possible. (i.e. 50 measurements).

This infinite number of observations (measurements) is called the population or universe of data.

# Sensitivity

#### Instruments or methods ability to discriminate between small differences in analyte concentration.


# Selectivity

Degree to which the method is free from interference by other species contained in the sample matrix.

### **Detection Limit**

Minimum concentration or mass of analyte that can be detected at a known confidence level.

# **Dynamic Range**



**Figure 1-7** Useful range of an analytical method. LOQ = limit of quantitative measurement; LOL = limit of linear response.

# Assignment

- Review Statistics
- Homework 4 & 5
- Homework 6 Stats
- Read: QA/QC topic Ch. 1 and 2 of Prichard