Waters SYNAPT G2-Si MS System

SYSTEM HARDWARE SPECIFICATIONS

Regulatory approvals/marks

CE, CB, NRTL (CAN/US), RCM

PERFORMANCE SPECIFICATIONS

TOE more recelution in a setting in	tes in TOF mode and can be upgraded on site to provide Mobility-TOF mode
TOF mass resolution in positive ion	60,000 EW/HM measured on the (W + 6H) ²¹ isotope cluster from bovine insulin (<i>m/z</i> 956)
TOF mass resolution in negative ion	$(m/2 \ 143)$
Positive ion MS sensitivity	The peak at $m/2$ 556 from a solution of 50 pg/µL leucine enkephalin in 50/50 acctonitrile/water
	$\pm 0.1\%$ formic acid, infused at a now rate of 5 µL/min, will have an intensity of greater than 31,200
	insulia) and the mass range will be get to a require of 1000 m/s
	Insulin) and the mass range will be set to a maximum of 1200 m/z
	Target Enhancement mode
	The peak at m/z 556 from a solution of 10 pg/µL leucine enkephalin in 50/50 acetonitrile/water
	+0.1% formic acid, infused at a flow rate of 5 μ L/min, will have an intensity of greater than
	24,800 ions per second. The instrument will be tuned to 20,000 resolution
	(as demonstrated on bovine insulin), with sensitivity set to a maximum at 556 m/z
Negative ion MS sensitivity	The peak at m/z 503 from a solution of 500 pg/µL raffinose in 70/30 acetonitrile/water (no
	additives), infused at a flow rate of 5 μ L/min, will have an intensity of greater than 33,600 ions
	per second. The instrument will be tuned to 10,000 resolution (as demonstrated on bovine
	insulin), and the mass range will be set to a maximum of 1200 m/z
Positive ion MS/MS sensitivity	Using a [Glu ¹] -Fibrinopeptide B solution of 100 fmol/ μ L, at a flow rate of 5 μ L/min and with the
	instrument tuned for 10,000 resolution (as demonstrated on bovine insulin), the intensity of the
	most intense y" sequence ion from the MS/MS spectrum of the doubly charged precursor ion
	(785.8 m/z) will be greater than 2,400 ions per second. The instrument mass range will be set to
	a maximum of 2000 <i>m/z</i>
Negative ion MS/MS sensitivity	Using a solution of 500 pg/ μ L raffinose in 70/30 acetonitrile/water, at a flow rate of
	5 μ L/min and with the instrument tuned for 10,000 resolution (as demonstrated on bovine
	insulin), the intensity of the fragment ion at 179.1 m/z in the MS/MS spectrum of the precursor ion
	at 503.2 m/z will be greater than 2,400 ions per second. The instrument mass range will be set to
	a maximum of 1200 <i>m/z</i>
Mass scale calibration accuracy	The mass measurement accuracy of the instrument in High Resolution mode, using internal lock
	masses, is such that the RMS error between the measured and the accepted masses of peaks
	which have sufficient intensity, and are free from interference from other masses, will be less
	than 1 ppm over the range 150 to 900 m/z
Mass measurement accuracy	The mass measurement accuracy of the instrument, in High Resolution mode, will be better
	than 1 ppm RMS, based on 10 consecutive repeat measurements of the
	$[M + Na]^+$ ion of raffinose (<i>m</i> / <i>z</i> 527.1588), using the $[M + H]^+$ ions of leucine enkephalin (<i>m</i> / <i>z</i>
	556.2771) and 4-acetamidophenol (m/z 152.0712) as the LockSpray $^{ m m}$ lockmasses. Analyte and
	lockmass peaks must have sufficient intensity and be free of interference from other masses
Mass range	The TOF mass range is 20 to 100,000 m/z in Resolution mode, and 20 to 32,000 m/z in High
	Resolution mode. The m/z transmission range for a quadrupole in non-resolving mode is 20 to
	16,000 <i>m/z</i> for a 4000 <i>m/z</i> quadrupole, and 20 to 32,000 <i>m/z</i> for an 8000 <i>m/z</i> quadrupole
Acquisition rate	Mass spectra can be acquired up to a rate of 30 per second (mode dependent)
Dynamic range	The dynamic range in High Resolution mode, defined as the range of peak intensities that will
	give better than 3 ppm accurate mass RMS for 10 sec of data without pDRE
	(programmable Dynamic Range Enhancement), is at least 4 orders of magnitude, when
	measured on the m/z 556.2771 peak from leucine enkephalin
High mass precursor selection	Applicable to instruments with 8000 m/z and 32,000 m/z quadrupoles only
	The low energy MS/MS spectrum of m/z 5569.1 from a solution of 2 µg/µL sodium iodide in
	50/50 isopropanol/water will contain only m/z 5569.1 and its fragments. The intensity of the
	largest fragment ion will be less than 5% of the intensity of the precursor ion. MS/MS data will
	be acquired over the mass range 100 – 8000 m/z , with collision energy of 10 eV
	-