ADDITIONAL QUESTIONS ON ELECTROCHEMISTRY AND NUCLEAR CHEMISTRY

Question 1: A constant current of 0.025 amps is passed through a 1 Molar solution of Cr(NO₃)₃ for 6 hours. How many coulombs of charge is this equivalent to?

- (a) 648 coulombs
- (b) 540 coulombs
- (c) 324 coulombs
- (d) 188 coulombs
- (e) None of the above values are correct

Question 2: A constant current of 0.025 amps is passed through a 1 Molar solution of Cr(NO₃)₃ for 6 hours. How many moles of electrons is this equivalent to? Faradays constant is 96,500 Coulombs/mole

- (a) 0.006715 moles of electrons
- (b) 0.000580 moles of electrons
- (c) 0.001948 moles of electrons
- (d) 0.003358 moles of electrons
- (e) 0.005596 moles of electrons

Question 3: A constant current of 0.025 amps is passed through a 1 Molar solution of Cr(NO₃)₃ for 6 hours. How many grams of silver metal would be produced? The molar mass of Cr is 51.97 grams/mole Faradays constant is 96,500 Coulombs/mole

Hint:
$$Cr^{3+}_{(aq)} + 3 e^{-} - Cr_{(metal)}$$

- (a) 0.3622 grams of chromium
- (b) 0.7243 grams of chromium
- (c) 0.1811 grams of chromium
- (d) 0.0626 grams of chromium
- (e) none of the above answers are correct

Question 4: What is an alpha particle?

- (a) A high-speed electron
- (b) A helium nucleus
- (c) A high energy photon
- (d) A proton that has captured an electron and has been converted into a neutron
- (e) None of the above answers are correct

Question 5: What is the question mark needed to balance the nuclear reaction given below:

$$^{239}_{94}$$
Pu + $^{1}_{0}$ n --->????+ $^{0}_{-1}$ β

- (a) $^{241}_{95}$ Am
- (b) $^{240}_{95}$ Am
- (c) ${}^{241}_{93}$ Np
- (d) $^{240}_{95}$ Th
- (e) Correct answer is not given

Question 6: What is the question mark needed to balance the nuclear reaction given below:

$$^{253}_{99}$$
Es+ $^{4}_{2}\alpha$ ----> ????+ $^{1}_{0}$ n

- (a) $^{256}_{101}$ Lr
- (b) $^{257}_{101}$ Lr
- (c) $^{257}_{100}$ Fm
- (d) $^{256}_{101}$ Md
- (e) Correct answer is not given

Question 7: Strontium-90 is a radioactive byproduct of nuclear reactors that behaves biologically like calcium. A sample of Strontium-90 has an activity of 1.2×10^{12} disintegrations per second (d/s). The half-life of Strontium-90 is 29 years. What will be the activity of the strontium-90 sample after 59 years?

(a) $2.9 \times 10^{11} \text{ d/s}$

(b) $1.3 \times 10^{11} \text{ d/s}$

(c) $6.5 \times 10^{11} \text{ d/s}$

(d) $9.2 \times 10^{10} \text{ d/s}$

(e) None of the above answers are correct

Free response questions:

Question 8: A fabric remnant from a burial site has a ¹⁴C/¹²C ratio of 0.735 of its original value. How old is the fabric. The half-life of ¹⁴C is 5730 years.

Question 9: Fill in the missing information needed to complete the following nuclear equations:

$$^{238}_{92}$$
U+ $^{14}_{7}$ N --->????+ $^{1}_{0}$ n

$$^{238}_{92}$$
U + ????---> $^{249}_{100}$ Fm+ $^{1}_{0}$ n

$$^{246}_{96}$$
Cm + ?????---> $^{254}_{102}$ No + 4^{1}_{0} n

Question 10: The oldest known fossil cells were found in South Africa. The fossil has been dated by the reaction:

87
Rb ---> 87 Sr+ $^{0}_{-1}\beta$

The half-life of Rb-87 is 5×10^{10} years. If the ratio of the present quantity of Rb-87 to the original quantity is 0.951, what is the age of the fossil fuels.

				· · · · · · · · · · · · · · · · · · ·						
2 17e 4.00	10 Ne 20.18	18 Ar 39.95	36	Жr 83.80	ጁ	Xe 131.29	98	Rn (222)		
VIIA	9 P 19.00	17 Cl 35.45	35.	Br 79.90	∵⊠	I 126.90	85	A1 (210)		
VIA VIA	8 O 16.00	16 5 32.06	75	. Se 78.96	52	Te 127.60	84	(20%)		
∀ >	Z Z 1	15 P 30.97	73	A8 74.92	15	Sh 121.75	83	ni 208.98		
IVA	6 C C	14 S1 28.09		3.2 Ge 72.59	9	5a 5a 118.69	82	F\$ 207.20		
ā	5 II 10.81	13 .A1 26.98		51 G# 69.72	70	To Tn 114,82	18	T1 204.38		
		11.0		30 Zn 65.38	9	48 Cd 112.41	80	11g 200.59		·
		<u> </u>	9	29 Cu 63.55		47 A8 107.87	0,	Λu 196.97		
				28. Z. 28.		46 Fd 106.42	o.	P.1 195.08		
				27 Co 58.93		45 Rh 102 91		r 192.22		
				28.28.28.28.28.28.28.28.28.28.28.28.28.2		Rn 101 07		03.001		
			EII>	知春春		43 7 43	10.63	75 Re 186.21		
			SES	3 C K	21.7	42	2.5	74 W 183,85		106 11mbg (263)
			VB	23 V	500	4 Ž	92.91	73 T.	T T T T T T T T T T T T T T T T T T T	105 (Inp\$ (262)
			143	22	47.88	40 Zr	91.22	72 HI	64.071	104 Unq5 (261)
•			11118	21 Sc	44.96	39	88.91	57	138.71	89 tac 227.03
	IIA 4 IIc	9.01 7.2 Mg	24.31	ន១	\$ 0.08	38 Sr	87.62	56 00	137.33	88 Ra 226.03
∠ - =	10.1	6.94 = N	23.00	19 K	39.10	37 Rh	85.47	ಜರ	132.91	87 Pr (223)
<u> </u>										

XIIIA

· Lanthankles	nk/c3								1	``	Ç	5,	7.
28 Ce 140.12	59 Pr 140.91	00 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	86 Dy 162.50	67 Ho 164.93	er Er 167.26	Tm 168.93	75 173.04	Lo 174.97
† Actinió	3								·				
% 4.T 232.04	91 Fa	92 11 238.03	93 NP 217.05	Z E (77)	95 Am (243)	% C 2 %	97 Br (247)	\$ \$ £ € €	(252)	85 % (25)	101 Md (258)	% S (259)	103