
In recent decades, a huge hole in the ozone layer has spread out from
Antarctica.

Chapter 34

Light as a particle

The only thing that interferes with my learning is my educa-
tion.

Albert Einstein

Radioactivity is random, but do the laws of physics exhibit ran-
domness in other contexts besides radioactivity? Yes. Radioactive
decay was just a good playpen to get us started with concepts of
randomness, because all atoms of a given isotope are identical. By
stocking the playpen with an unlimited supply of identical atom-
toys, nature helped us to realize that their future behavior could be
different regardless of their original identicality. We are now ready
to leave the playpen, and see how randomness fits into the structure
of physics at the most fundamental level.

The laws of physics describe light and matter, and the quantum
revolution rewrote both descriptions. Radioactivity was a good ex-
ample of matter’s behaving in a way that was inconsistent with
classical physics, but if we want to get under the hood and under-
stand how nonclassical things happen, it will be easier to focus on
light rather than matter. A radioactive atom such as uranium-235
is after all an extremely complex system, consisting of 92 protons,
143 neutrons, and 92 electrons. Light, however, can be a simple sine
wave.

However successful the classical wave theory of light had been — al-
lowing the creation of radio and radar, for example — it still failed
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to describe many important phenomena. An example that is cur-
rently of great interest is the way the ozone layer protects us from
the dangerous short-wavelength ultraviolet part of the sun’s spec-
trum. In the classical description, light is a wave. When a wave
passes into and back out of a medium, its frequency is unchanged,
and although its wavelength is altered while it is in the medium,
it returns to its original value when the wave reemerges. Luckily
for us, this is not at all what ultraviolet light does when it passes
through the ozone layer, or the layer would offer no protection at
all!

34.1 Evidence for light as a particle

a / Images made by a digital cam-
era. In each successive image,
the dim spot of light has been
made even dimmer.

For a long time, physicists tried to explain away the problems with
the classical theory of light as arising from an imperfect understand-
ing of atoms and the interaction of light with individual atoms and
molecules. The ozone paradox, for example, could have been at-
tributed to the incorrect assumption that the ozone layer was a
smooth, continuous substance, when in reality it was made of indi-
vidual ozone molecules. It wasn’t until 1905 that Albert Einstein
threw down the gauntlet, proposing that the problem had nothing to
do with the details of light’s interaction with atoms and everything
to do with the fundamental nature of light itself.

In those days the data were sketchy, the ideas vague, and the ex-
periments difficult to interpret; it took a genius like Einstein to cut
through the thicket of confusion and find a simple solution. Today,
however, we can get right to the heart of the matter with a piece of
ordinary consumer electronics, the digital camera. Instead of film, a
digital camera has a computer chip with its surface divided up into a
grid of light-sensitive squares, called “pixels.” Compared to a grain
of the silver compound used to make regular photographic film, a
digital camera pixel is activated by an amount of light energy or-
ders of magnitude smaller. We can learn something new about light
by using a digital camera to detect smaller and smaller amounts of
light, as shown in figures a/1 through a/3. Figure 1 is fake, but 2
and 3 are real digital-camera images made by Prof. Lyman Page
of Princeton University as a classroom demonstration. Figure 1 is
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b / A water wave is partially
absorbed.

c / A stream of bullets is par-
tially absorbed.

what we would see if we used the digital camera to take a picture of
a fairly dim source of light. In figures 2 and 3, the intensity of the
light was drastically reduced by inserting semitransparent absorbers
like the tinted plastic used in sunglasses. Going from 1 to 2 to 3,
more and more light energy is being thrown away by the absorbers.

The results are dramatically different from what we would expect
based on the wave theory of light. If light was a wave and nothing
but a wave, b, then the absorbers would simply cut down the wave’s
amplitude across the whole wavefront. The digital camera’s entire
chip would be illuminated uniformly, and weakening the wave with
an absorber would just mean that every pixel would take a long time
to soak up enough energy to register a signal.

But figures a/2 and a/3 show that some pixels take strong hits while
others pick up no energy at all. Instead of the wave picture, the im-
age that is naturally evoked by the data is something more like a
hail of bullets from a machine gun, c. Each “bullet” of light appar-
ently carries only a tiny amount of energy, which is why detecting
them individually requires a sensitive digital camera rather than an
eye or a piece of film.

Although Einstein was interpreting different observations, this is
the conclusion he reached in his 1905 paper: that the pure wave
theory of light is an oversimplification, and that the energy of a beam
of light comes in finite chunks rather than being spread smoothly
throughout a region of space.

d / Einstein and Seurat: twins
separated at birth? Detail from
Seine Grande Jatte by Georges
Seurat, 1886.
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e / Apparatus for observing
the photoelectric effect. A beam
of light strikes a capacitor plate
inside a vacuum tube, and elec-
trons are ejected (black arrows).

We now think of these chunks as particles of light, and call them
“photons,” although Einstein avoided the word “particle,” and the
word “photon” was invented later. Regardless of words, the trou-
ble was that waves and particles seemed like inconsistent categories.
The reaction to Einstein’s paper could be kindly described as vig-
orously skeptical. Even twenty years later, Einstein wrote, “There
are therefore now two theories of light, both indispensable, and —
as one must admit today despite twenty years of tremendous effort
on the part of theoretical physicists — without any logical connec-
tion.” In the remainder of this chapter we will learn how the seeming
paradox was eventually resolved.

Discussion questions

A Suppose someone rebuts the digital camera data in figure a, claim-
ing that the random pattern of dots occurs not because of anything fun-
damental about the nature of light but simply because the camera’s pixels
are not all exactly the same — some are just more sensitive than others.
How could we test this interpretation?

B Discuss how the correspondence principle applies to the observa-
tions and concepts discussed in this section.

34.2 How much light is one photon?
The photoelectric effect

We have seen evidence that light energy comes in little chunks, so
the next question to be asked is naturally how much energy is in one
chunk. The most straightforward experimental avenue for address-
ing this question is a phenomenon known as the photoelectric effect.
The photoelectric effect occurs when a photon strikes the surface of
a solid object and knocks out an electron. It occurs continually all
around you. It is happening right now at the surface of your skin
and on the paper or computer screen from which you are reading
these words. It does not ordinarily lead to any observable electrical
effect, however, because on the average, free electrons are wandering
back in just as frequently as they are being ejected. (If an object
did somehow lose a significant number of electrons, its growing net
positive charge would begin attracting the electrons back more and
more strongly.)

Figure e shows a practical method for detecting the photoelectric
effect. Two very clean parallel metal plates (the electrodes of a ca-
pacitor) are sealed inside a vacuum tube, and only one plate is ex-
posed to light. Because there is a good vacuum between the plates,
any ejected electron that happens to be headed in the right direc-
tion will almost certainly reach the other capacitor plate without
colliding with any air molecules.

The illuminated (bottom) plate is left with a net positive charge,
and the unilluminated (top) plate acquires a negative charge from
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f / The hamster in her hamster
ball is like an electron emerging
from the metal (tiled kitchen floor)
into the surrounding vacuum
(wood floor). The wood floor is
higher than the tiled floor, so as
she rolls up the step, the hamster
will lose a certain amount of
kinetic energy, analogous to Es.
If her kinetic energy is too small,
she won’t even make it up the
step.

the electrons deposited on it. There is thus an electric field between
the plates, and it is because of this field that the electrons’ paths are
curved, as shown in the diagram. However, since vacuum is a good
insulator, any electrons that reach the top plate are prevented from
responding to the electrical attraction by jumping back across the
gap. Instead they are forced to make their way around the circuit,
passing through an ammeter. The ammeter measures the strength
of the photoelectric effect.

An unexpected dependence on frequency

The photoelectric effect was discovered serendipitously by Heinrich
Hertz in 1887, as he was experimenting with radio waves. He was not
particularly interested in the phenomenon, but he did notice that the
effect was produced strongly by ultraviolet light and more weakly by
lower frequencies. Light whose frequency was lower than a certain
critical value did not eject any electrons at all.1 This dependence on
frequency didn’t make any sense in terms of the classical wave theory
of light. A light wave consists of electric and magnetic fields. The
stronger the fields, i.e., the greater the wave’s amplitude, the greater
the forces that would be exerted on electrons that found themselves
bathed in the light. It should have been amplitude (brightness) that
was relevant, not frequency. The dependence on frequency not only
proves that the wave model of light needs modifying, but with the
proper interpretation it allows us to determine how much energy is
in one photon, and it also leads to a connection between the wave
and particle models that we need in order to reconcile them.

To make any progress, we need to consider the physical process by
which a photon would eject an electron from the metal electrode. A
metal contains electrons that are free to move around. Ordinarily,
in the interior of the metal, such an electron feels attractive forces
from atoms in every direction around it. The forces cancel out. But
if the electron happens to find itself at the surface of the metal,
the attraction from the interior side is not balanced out by any
attraction from outside. In popping out through the surface the
electron therefore loses some amount of energy Es, which depends
on the type of metal used.

Suppose a photon strikes an electron, annihilating itself and giving
up all its energy to the electron.2 The electron will (1) lose kinetic
energy through collisions with other electrons as it plows through
the metal on its way to the surface; (2) lose an amount of kinetic
energy equal to Es as it emerges through the surface; and (3) lose
more energy on its way across the gap between the plates, due to

1In fact this was all prior to Thomson’s discovery of the electron, so Hertz
would not have described the effect in terms of electrons — we are discussing
everything with the benefit of hindsight.

2We now know that this is what always happens in the photoelectric effect,
although it had not yet been established in 1905 whether or not the photon was
completely annihilated.
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g / A different way of study-
ing the photoelectric effect.

h / The quantity Es + e∆V in-
dicates the energy of one photon.
It is found to be proportional to
the frequency of the light.

the electric field between the plates. Even if the electron happens to
be right at the surface of the metal when it absorbs the photon, and
even if the electric field between the plates has not yet built up very
much, Es is the bare minimum amount of energy that the electron
must receive from the photon if it is to contribute to a measurable
current. The reason for using very clean electrodes is to minimize Es
and make it have a definite value characteristic of the metal surface,
not a mixture of values due to the various types of dirt and crud
that are present in tiny amounts on all surfaces in everyday life.

We can now interpret the frequency dependence of the photoelectric
effect in a simple way: apparently the amount of energy possessed
by a photon is related to its frequency. A low-frequency red or
infrared photon has an energy less than Es, so a beam of them will
not produce any current. A high-frequency blue or violet photon,
on the other hand, packs enough of a punch to allow an electron to
get out of the electrode. At frequencies higher than the minimum,
the photoelectric current continues to increase with the frequency
of the light because of effects (1) and (3).

Numerical relationship between energy and frequency

Prompted by Einstein’s photon paper, Robert Millikan (whom we
encountered in ch. 26) figured out how to use the photoelectric ef-
fect to probe precisely the link between frequency and photon en-
ergy. Rather than going into the historical details of Millikan’s ac-
tual experiments (a lengthy experimental program that occupied a
large part of his professional career) we will describe a simple ver-
sion, shown in figure g, that is used sometimes in college laboratory
courses. The idea is simply to illuminate one plate of the vacuum
tube with light of a single wavelength and monitor the voltage differ-
ence between the two plates as they charge up. Since the resistance
of a voltmeter is very high (much higher than the resistance of an
ammeter), we can assume to a good approximation that electrons
reaching the top plate are stuck there permanently, so the voltage
will keep on increasing for as long as electrons are making it across
the vacuum tube.

At a moment when the voltage difference has a reached a value ∆V,
the minimum energy required by an electron to make it out of the
bottom plate and across the gap to the other plate is Es + e∆V.
As ∆V increases, we eventually reach a point at which Es + e∆V
equals the energy of one photon. No more electrons can cross the
gap, and the reading on the voltmeter stops rising. The quantity
Es+e∆V now tells us the energy of one photon. If we determine this
energy for a variety of frequencies, h, we find the following simple
relationship between the energy of a photon and the frequency of
the light:

E = hf ,

where h is a constant with a numerical value of 6.63 × 10−34 J ·s.
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Historical note
What I’m presenting in this chap-
ter is a simplified explanation of
how the photon could have been
discovered. The actual history
is more complex. Max Planck
(1858-1947) began the photon
saga with a theoretical investiga-
tion of the spectrum of light emit-
ted by a hot, glowing object. He
introduced quantization of the en-
ergy of light waves, in multiples
of hf , purely as a mathemati-
cal trick that happened to pro-
duce the right results. Planck
did not believe that his proce-
dure could have any physical sig-
nificance. In his 1905 paper
Einstein took Planck’s quantiza-
tion as a description of reality,
and applied it to various theo-
retical and experimental puzzles,
including the photoelectric effect.
Millikan then subjected Einstein’s
ideas to a series of rigorous ex-
perimental tests. Although his re-
sults matched Einstein’s predic-
tions perfectly, Millikan was skep-
tical about photons, and his pa-
pers conspicuously omit any ref-
erence to them. Only in his auto-
biography did Millikan rewrite his-
tory and claim that he had given
experimental proof for photons.

Note how the equation brings the wave and particle models of light
under the same roof: the left side is the energy of one particle of
light, while the right side is the frequency of the same light, inter-
preted as a wave. The constant h is known as Planck’s constant (see
historical note on page 945).

self-check A
How would you extract h from the graph in figure h? What if you didn’t
even know Es in advance, and could only graph e∆V versus f? .

Answer, p. 1011

Since the energy of a photon is hf , a beam of light can only have
energies of hf , 2hf , 3hf , etc. Its energy is quantized — there is no
such thing as a fraction of a photon. Quantum physics gets its name
from the fact that it quantizes things like energy, momentum, and
angular momentum that had previously been thought to be smooth,
continuous and infinitely divisible.

Number of photons emitted by a lightbulb per second example 1
. Roughly how many photons are emitted by a 100-W lightbulb in
1 second?

. People tend to remember wavelengths rather than frequencies
for visible light. The bulb emits photons with a range of frequen-
cies and wavelengths, but let’s take 600 nm as a typical wave-
length for purposes of estimation. The energy of a single photon
is

Ephoton = hf

=
hc
λ

A power of 100 W means 100 joules per second, so the number
of photons is

100 J
Ephoton

=
100 J
hc/λ

≈ 3× 1020 .

This hugeness of this number is consistent with the correspon-
dence principle. The experiments that established the classical
theory of optics weren’t wrong. They were right, within their do-
main of applicability, in which the number of photons was so large
as to be indistinguishable from a continuous beam.

Measuring the wave example 2
When surfers are out on the water waiting for their chance to
catch a wave, they’re interested in both the height of the waves
and when the waves are going to arrive. In other words, they ob-
serve both the amplitude and phase of the waves, and it doesn’t
matter to them that the water is granular at the molecular level.
The correspondence principle requires that we be able to do the
same thing for electromagnetic waves, since the classical theory
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of electricity and magnetism was all stated and verified experi-
mentally in terms of the fields E and B, which are the amplitude of
an electromagnetic wave. The phase is also necessary, since the
laws of induction predict different results depending on whether
an oscillating field is on its way up or on its way back down.

This is a more demanding application of the correspondence prin-
ciple than the one in example 1, since amplitudes and phases
constitute more detailed information than the over-all intensity of
a beam of light. Eyeball measurements can’t detect this type of in-
formation, since the eye is much bigger than a wavelength, but for
example an AM radio receiver can do it with radio waves, since
the wavelength for a station at 1000 kHz is about 300 meters,
which is much larger than the antenna. The correspondence prin-
ciple demands that we be able to explain this in terms of the pho-
ton theory, and this requires not just that we have a large number
of photons emitted by the transmitter per second, as in example 1,
but that even by the time they spread out and reach the receiving
antenna, there should be many photons overlapping each other
within a space of one cubic wavelength. Problem 13 on p. 956
verifies that the number is in fact extremely large.

Momentum of a photon example 3
. According to the theory of relativity, the momentum of a beam
of light is given by p = E/c (see homework problem 12 on page
787). Apply this to find the momentum of a single photon in terms
of its frequency, and in terms of its wavelength.

. Combining the equations p = E/c and E = hf , we find

p =
E
c

=
hf
c

.

To reexpress this in terms of wavelength, we use c = fλ:

p =
hf
fλ

=
h
λ

The second form turns out to be simpler.

Discussion questions

A The photoelectric effect only ever ejects a very tiny percentage of
the electrons available near the surface of an object. How well does this
agree with the wave model of light, and how well with the particle model?
Consider the two different distance scales involved: the wavelength of the
light, and the size of an atom, which is on the order of 10−10 or 10−9 m.

B What is the significance of the fact that Planck’s constant is numeri-
cally very small? How would our everyday experience of light be different
if it was not so small?
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C How would the experiments described above be affected if a single
electron was likely to get hit by more than one photon?

D Draw some representative trajectories of electrons for ∆V = 0, ∆V
less than the maximum value, and ∆V greater than the maximum value.

E Does E = hf imply that a photon changes its energy when it passes
from one transparent material into another substance with a different in-
dex of refraction?

34.3 Wave-particle duality

i / Wave interference patterns
photographed by Prof. Lyman
Page with a digital camera. Laser
light with a single well-defined
wavelength passed through a
series of absorbers to cut down
its intensity, then through a set of
slits to produce interference, and
finally into a digital camera chip.
(A triple slit was actually used,
but for conceptual simplicity we
discuss the results in the main
text as if it was a double slit.) In
panel 2 the intensity has been
reduced relative to 1, and even
more so for panel 3.

How can light be both a particle and a wave? We are now ready to
resolve this seeming contradiction. Often in science when something
seems paradoxical, it’s because we either don’t define our terms care-
fully, or don’t test our ideas against any specific real-world situation.
Let’s define particles and waves as follows:

• Waves exhibit superposition, and specifically interference phe-
nomena.

• Particles can only exist in whole numbers, not fractions.

As a real-world check on our philosophizing, there is one particular
experiment that works perfectly. We set up a double-slit interfer-
ence experiment that we know will produce a diffraction pattern if
light is an honest-to-goodness wave, but we detect the light with a
detector that is capable of sensing individual photons, e.g., a dig-
ital camera. To make it possible to pick out individual dots from
individual photons, we must use filters to cut down the intensity of
the light to a very low level, just as in the photos by Prof. Page in
section 34.1. The whole thing is sealed inside a light-tight box. The
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j / Bullets pass through a double
slit.

k / A water wave passes through
a double slit.

results are shown in figure i. (In fact, the similar figures in section
34.1 are simply cutouts from these figures.)

Neither the pure wave theory nor the pure particle theory can ex-
plain the results. If light was only a particle and not a wave, there
would be no interference effect. The result of the experiment would
be like firing a hail of bullets through a double slit, j. Only two
spots directly behind the slits would be hit.

If, on the other hand, light was only a wave and not a particle, we
would get the same kind of diffraction pattern that would happen
with a water wave, k. There would be no discrete dots in the photo,
only a diffraction pattern that shaded smoothly between light and
dark.

Applying the definitions to this experiment, light must be both a
particle and a wave. It is a wave because it exhibits interference
effects. At the same time, the fact that the photographs contain
discrete dots is a direct demonstration that light refuses to be split
into units of less than a single photon. There can only be whole
numbers of photons: four photons in figure i/3, for example.

A wrong interpretation: photons interfering with each other

One possible interpretation of wave-particle duality that occurred
to physicists early in the game was that perhaps the interference
effects came from photons interacting with each other. By analogy,
a water wave consists of moving water molecules, and interference of
water waves results ultimately from all the mutual pushes and pulls
of the molecules. This interpretation was conclusively disproved by
G.I. Taylor, a student at Cambridge. The demonstration by Prof.
Page that we’ve just been discussing is essentially a modernized
version of Taylor’s work. Taylor reasoned that if interference effects
came from photons interacting with each other, a bare minimum of
two photons would have to be present at the same time to produce
interference. By making the light source extremely dim, we can be
virtually certain that there are never two photons in the box at the
same time. In figure i, the intensity of the light has been cut down
so much by the absorbers that if it was in the open, the average
separation between photons would be on the order of a kilometer!
At any given moment, the number of photons in the box is most
likely to be zero. It is virtually certain that there were never two
photons in the box at once.

The concept of a photon’s path is undefined.

If a single photon can demonstrate double-slit interference, then
which slit did it pass through? The unavoidable answer must be
that it passes through both! This might not seem so strange if we
think of the photon as a wave, but it is highly counterintuitive if we
try to visualize it as a particle. The moral is that we should not think
in terms of the path of a photon. Like the fully human and fully
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l / A single photon can go
through both slits.

divine Jesus of Christian theology, a photon is supposed to be 100%
wave and 100% particle. If a photon had a well defined path, then it
would not demonstrate wave superposition and interference effects,
contradicting its wave nature. (In the next chapter we will discuss
the Heisenberg uncertainty principle, which gives a numerical way
of approaching this issue.)

Another wrong interpretation: the pilot wave hypothesis

A second possible explanation of wave-particle duality was taken se-
riously in the early history of quantum mechanics. What if the pho-
ton particle is like a surfer riding on top of its accompanying wave?
As the wave travels along, the particle is pushed, or “piloted” by it.
Imagining the particle and the wave as two separate entities allows
us to avoid the seemingly paradoxical idea that a photon is both at
once. The wave happily does its wave tricks, like superposition and
interference, and the particle acts like a respectable particle, reso-
lutely refusing to be in two different places at once. If the wave, for
instance, undergoes destructive interference, becoming nearly zero
in a particular region of space, then the particle simply is not guided
into that region.

The problem with the pilot wave interpretation is that the only way
it can be experimentally tested or verified is if someone manages to
detach the particle from the wave, and show that there really are
two entities involved, not just one. Part of the scientific method is
that hypotheses are supposed to be experimentally testable. Since
nobody has ever managed to separate the wavelike part of a photon
from the particle part, the interpretation is not useful or meaningful
in a scientific sense.

The probability interpretation

The correct interpretation of wave-particle duality is suggested by
the random nature of the experiment we’ve been discussing: even
though every photon wave/particle is prepared and released in the
same way, the location at which it is eventually detected by the
digital camera is different every time. The idea of the probability
interpretation of wave-particle duality is that the location of the
photon-particle is random, but the probability that it is in a certain
location is higher where the photon-wave’s amplitude is greater.

More specifically, the probability distribution of the particle must
be proportional to the square of the wave’s amplitude,

(probability distribution) ∝ (amplitude)2 .

This follows from the correspondence principle and from the fact
that a wave’s energy density is proportional to the square of its am-
plitude. If we run the double-slit experiment for a long enough time,
the pattern of dots fills in and becomes very smooth as would have
been expected in classical physics. To preserve the correspondence
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m / Example 4.

between classical and quantum physics, the amount of energy de-
posited in a given region of the picture over the long run must be
proportional to the square of the wave’s amplitude. The amount of
energy deposited in a certain area depends on the number of pho-
tons picked up, which is proportional to the probability of finding
any given photon there.

A microwave oven example 4
. The figure shows two-dimensional (top) and one-dimensional
(bottom) representations of the standing wave inside a microwave
oven. Gray represents zero field, and white and black signify the
strongest fields, with white being a field that is in the opposite di-
rection compared to black. Compare the probabilities of detecting
a microwave photon at points A, B, and C.

. A and C are both extremes of the wave, so the probabilities of
detecting a photon at A and C are equal. It doesn’t matter that we
have represented C as negative and A as positive, because it is
the square of the amplitude that is relevant. The amplitude at B is
about 1/2 as much as the others, so the probability of detecting a
photon there is about 1/4 as much.

The probability interpretation was disturbing to physicists who had
spent their previous careers working in the deterministic world of
classical physics, and ironically the most strenuous objections against
it were raised by Einstein, who had invented the photon concept
in the first place. The probability interpretation has nevertheless
passed every experimental test, and is now as well established as
any part of physics.

An aspect of the probability interpretation that has made many
people uneasy is that the process of detecting and recording the
photon’s position seems to have a magical ability to get rid of the
wavelike side of the photon’s personality and force it to decide for
once and for all where it really wants to be. But detection or mea-
surement is after all only a physical process like any other, governed
by the same laws of physics. We will postpone a detailed discussion
of this issue until the following chapter, since a measuring device
like a digital camera is made of matter, but we have so far only
discussed how quantum mechanics relates to light.

What is the proportionality constant? example 5
. What is the proportionality constant that would make an actual
equation out of (probability distribution) ∝ (amplitude)2?

. The probability that the photon is in a certain small region of
volume v should equal the fraction of the wave’s energy that is
within that volume. For a sinusoidal wave, which has a single,
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well-defined frequency f , this gives

P =
energy in volume v
energy of photon

=
energy in volume v

hf
.

We assume v is small enough so that the electric and magnetic
fields are nearly constant throughout it. We then have

P =

(
1

8πk |E|
2 + c2

8πk |B|
2
)

v

hf
.

We can simplify this formidable looking expression by recognizing
that in a plane wave, |E| and |B| are related by |E| = c|B|. This
implies (problem 20, p. 703), that the electric and magnetic fields
each contribute half the total energy, so we can simplify the result
to

P = 2

( 1
8πk |E|

2) v
hf

=
v

4πkhf
|E|2 .

The probability is proportional to the square of the wave’s ampli-
tude, as advertised.3

Discussion questions

A In example 4 on page 950, about the carrot in the microwave oven,
show that it would be nonsensical to have probability be proportional to
the field itself, rather than the square of the field.

B Einstein did not try to reconcile the wave and particle theories of
light, and did not say much about their apparent inconsistency. Einstein
basically visualized a beam of light as a stream of bullets coming from
a machine gun. In the photoelectric effect, a photon “bullet” would only
hit one atom, just as a real bullet would only hit one person. Suppose
someone reading his 1905 paper wanted to interpret it by saying that
Einstein’s so-called particles of light are simply short wave-trains that only
occupy a small region of space. Comparing the wavelength of visible light

3But note that along the way, we had to make two crucial assumptions: that
the wave was sinusoidal, and that it was a plane wave. These assumptions will
not prevent us from describing examples such as double-slit diffraction, in which
the wave is approximately sinusoidal within some sufficiently small region such
as one pixel of a camera’s imaging chip. Nevertheless, these issues turn out to
be symptoms of deeper problems, beyond the scope of this book, involving the
way in which relativity and quantum mechanics should be combined. As a taste
of the ideas involved, consider what happens when a photon is reflected from a
conducting surface, as in example 8 on p. 688, so that the electric field at the
surface is zero, but the magnetic field isn’t. The superposition is a standing
wave, not a plane wave, so |E| = c|B| need not hold, and doesn’t. A detector’s
probability of detecting a photon near the surface could be zero if the detector
sensed electric fields, but nonzero if it sensed magnetism. It doesn’t make sense
to say that either of these is the probability that the photon “was really there.”
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n / The volume under a sur-
face.

(a few hundred nm) to the size of an atom (on the order of 0.1 nm), explain
why this poses a difficulty for reconciling the particle and wave theories.

C Can a white photon exist?

D In double-slit diffraction of photons, would you get the same pattern
of dots on the digital camera image if you covered one slit? Why should it
matter whether you give the photon two choices or only one?

34.4 Photons in three dimensions
Up until now I’ve been sneaky and avoided a full discussion of the
three-dimensional aspects of the probability interpretation. The ex-
ample of the carrot in the microwave oven, for example, reduced
to a one-dimensional situation because we were considering three
points along the same line and because we were only comparing ra-
tios of probabilities. The purpose of bringing it up now is to head
off any feeling that you’ve been cheated conceptually rather than to
prepare you for mathematical problem solving in three dimensions,
which would not be appropriate for the level of this course.

A typical example of a probability distribution in section 33.3 was
the distribution of heights of human beings. The thing that var-
ied randomly, height, h, had units of meters, and the probability
distribution was a graph of a function D(h). The units of the
probability distribution had to be m−1 (inverse meters) so that ar-
eas under the curve, interpreted as probabilities, would be unitless:
(area) = (height)(width) = m−1 ·m.

Now suppose we have a two-dimensional problem, e.g., the proba-
bility distribution for the place on the surface of a digital camera
chip where a photon will be detected. The point where it is detected
would be described with two variables, x and y, each having units
of meters. The probability distribution will be a function of both
variables, D(x, y). A probability is now visualized as the volume
under the surface described by the function D(x, y), as shown in
figure n. The units of D must be m−2 so that probabilities will be
unitless: (probability) = (depth)(length)(width) = m−2 ·m ·m.

Generalizing finally to three dimensions, we find by analogy that the
probability distribution will be a function of all three coordinates,
D(x, y, z), and will have units of m−3. It is, unfortunately, impossi-
ble to visualize the graph unless you are a mutant with a natural feel
for life in four dimensions. If the probability distribution is nearly
constant within a certain volume of space v, the probability that the
photon is in that volume is simply vD. If you know enough calculus,
it should be clear that this can be generalized to P =

∫
D dx dy dz

if D is not constant.
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Summary
Selected vocabulary
photon . . . . . . . . . . . a particle of light
photoelectric effect . . . . the ejection, by a photon, of an elec-

tron from the surface of an object
wave-particle duality . . . the idea that light is both a wave and

a particle

Summary

Around the turn of the twentieth century, experiments began to
show problems with the classical wave theory of light. In any exper-
iment sensitive enough to detect very small amounts of light energy,
it becomes clear that light energy cannot be divided into chunks
smaller than a certain amount. Measurements involving the pho-
toelectric effect demonstrate that this smallest unit of light energy
equals hf , where f is the frequency of the light and h is a number
known as Planck’s constant. We say that light energy is quantized
in units of hf , and we interpret this quantization as evidence that
light has particle properties as well as wave properties. Particles of
light are called photons.

The only method of reconciling the wave and particle natures of
light that has stood the test of experiment is the probability inter-
pretation: the probability that the particle is at a given location
is proportional to the square of the amplitude of the wave at that
location.

One important consequence of wave-particle duality is that we must
abandon the concept of the path the particle takes through space.
To hold on to this concept, we would have to contradict the well
established wave nature of light, since a wave can spread out in
every direction simultaneously.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

For some of these homework problems, you may find it convenient
to refer to the diagram of the electromagnetic spectrum shown on
p. 689.

1 Give a numerical comparison of the number of photons per
second emitted by a hundred-watt FM radio transmitter and a
hundred-watt lightbulb.

√

2 Two different flashes of light each have the same energy. One
consists of photons with a wavelength of 600 nm, the other 400 nm.
If the number of photons in the 600-nm flash is 3.0×1018, how many
photons are in the 400-nm flash?

√

3 When light is reflected from a mirror, perhaps only 80% of
the energy comes back. The rest is converted to heat. One could
try to explain this in two different ways: (1) 80% of the photons are
reflected, or (2) all the photons are reflected, but each loses 20% of
its energy. Based on your everyday knowledge about mirrors, how
can you tell which interpretation is correct? [Based on a problem
from PSSC Physics.]

4 Suppose we want to build an electronic light sensor using an
apparatus like the one described in section 34.2 on p. 942. How
would its ability to detect different parts of the spectrum depend on
the type of metal used in the capacitor plates?

5 The photoelectric effect can occur not just for metal cathodes
but for any substance, including living tissue. Ionization of DNA
molecules can cause cancer or birth defects. If the energy required to
ionize DNA is on the same order of magnitude as the energy required
to produce the photoelectric effect in a metal, which of these types
of electromagnetic waves might pose such a hazard? Explain.

60 Hz waves from power lines

100 MHz FM radio

1900 MHz radio waves from a cellular phone

2450 MHz microwaves from a microwave oven

visible light

ultraviolet light

x-rays

6 The beam of a 100-W overhead projector covers an area of
1 m× 1 m when it hits the screen 3 m away. Estimate the number
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Problem 7.

Problem 8.

of photons that are in flight at any given time. (Since this is only
an estimate, we can ignore the fact that the beam is not parallel.)

7 The two diffraction patterns were made by sending a flash of
light through the same double slit. Give a numerical comparison of
the amounts of energy in the two flashes.

√

8 Three of the four graphs are properly normalized to represent
single photons. Which one isn’t? Explain.

9 Photon Fred has a greater energy than photon Ginger. For
each of the following quantities, explain whether Fred’s value of
that quantity is greater than Ginger’s, less than Ginger’s, or equal
to Ginger’s. If there is no way to tell, explain why.

frequency

speed

wavelength

period

electric field strength

magnetic field strength

10 Give experimental evidence to disprove the following inter-
pretation of wave-particle duality: A photon is really a particle, but
it travels along a wavy path, like a zigzag with rounded corners. Cite
a specific, real experiment.

11 In the photoelectric effect, electrons are observed with virtu-
ally no time delay (∼ 10 ns), even when the light source is very weak.
(A weak light source does however only produce a small number of
ejected electrons.) The purpose of this problem is to show that the
lack of a significant time delay contradicted the classical wave the-
ory of light, so throughout this problem you should put yourself in
the shoes of a classical physicist and pretend you don’t know about
photons at all. At that time, it was thought that the electron might
have a radius on the order of 10−15 m. (Recent experiments have
shown that if the electron has any finite size at all, it is far smaller.)
(a) Estimate the power that would be soaked up by a single electron
in a beam of light with an intensity of 1 mW/m2.

√

(b) The energy, Es, required for the electron to escape through the
surface of the cathode is on the order of 10−19 J. Find how long it
would take the electron to absorb this amount of energy, and explain
why your result constitutes strong evidence that there is something
wrong with the classical theory.

√
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Problem 12.

12 Many radio antennas are designed so that they preferen-
tially emit or receive electromagnetic waves in a certain direction.
However, no antenna is perfectly directional. The wave shown in the
figure represents a single photon being emitted by an antenna at the
center. The antenna is directional, so there is a stronger wave on
the right than on the left. What is the probability that the photon
will be observed on the right?

13 (a) A radio transmitter radiates power P in all directions, so
that the energy spreads out spherically. Find the energy density at
a distance r.

√

(b) Let the wavelength be λ. As described in example 2 on p. 945,
find the number of photons in a volume λ3 at this distance r.

√

(c) For a 1000 kHz AM radio transmitting station, assuming rea-
sonable values of P and r, verify, as claimed in the example, that
the result from part b is very large.
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Dorothy melts the Wicked Witch
of the West.

Chapter 35

Matter as a wave

[In] a few minutes I shall be all melted... I have been wicked
in my day, but I never thought a little girl like you would ever
be able to melt me and end my wicked deeds. Look out —
here I go!

The Wicked Witch of the West

As the Wicked Witch learned the hard way, losing molecular cohe-
sion can be unpleasant. That’s why we should be very grateful that
the concepts of quantum physics apply to matter as well as light.
If matter obeyed the laws of classical physics, molecules wouldn’t
exist.

Consider, for example, the simplest atom, hydrogen. Why does
one hydrogen atom form a chemical bond with another hydrogen
atom? Roughly speaking, we’d expect a neighboring pair of hy-
drogen atoms, A and B, to exert no force on each other at all,
attractive or repulsive: there are two repulsive interactions (proton
A with proton B and electron A with electron B) and two attractive
interactions (proton A with electron B and electron A with proton
B). Thinking a little more precisely, we should even expect that once
the two atoms got close enough, the interaction would be repulsive.
For instance, if you squeezed them so close together that the two
protons were almost on top of each other, there would be a tremen-
dously strong repulsion between them due to the 1/r2 nature of the
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electrical force. The repulsion between the electrons would not be
as strong, because each electron ranges over a large area, and is not
likely to be found right on top of the other electron. This was only
a rough argument based on averages, but the conclusion is validated
by a more complete classical analysis: hydrogen molecules should
not exist according to classical physics.

Quantum physics to the rescue! As we’ll see shortly, the whole prob-
lem is solved by applying the same quantum concepts to electrons
that we have already used for photons.

35.1 Electrons as waves
We started our journey into quantum physics by studying the ran-
dom behavior of matter in radioactive decay, and then asked how
randomness could be linked to the basic laws of nature governing
light. The probability interpretation of wave-particle duality was
strange and hard to accept, but it provided such a link. It is now
natural to ask whether the same explanation could be applied to
matter. If the fundamental building block of light, the photon, is
a particle as well as a wave, is it possible that the basic units of
matter, such as electrons, are waves as well as particles?

A young French aristocrat studying physics, Louis de Broglie (pro-
nounced “broylee”), made exactly this suggestion in his 1923 Ph.D.
thesis. His idea had seemed so farfetched that there was serious
doubt about whether to grant him the degree. Einstein was asked
for his opinion, and with his strong support, de Broglie got his de-
gree.

Only two years later, American physicists C.J. Davisson and L. Ger-
mer confirmed de Broglie’s idea by accident. They had been study-
ing the scattering of electrons from the surface of a sample of nickel,
made of many small crystals. (One can often see such a crystalline
pattern on a brass doorknob that has been polished by repeated
handling.) An accidental explosion occurred, and when they put
their apparatus back together they observed something entirely dif-
ferent: the scattered electrons were now creating an interference
pattern! This dramatic proof of the wave nature of matter came
about because the nickel sample had been melted by the explosion
and then resolidified as a single crystal. The nickel atoms, now
nicely arranged in the regular rows and columns of a crystalline
lattice, were acting as the lines of a diffraction grating. The new
crystal was analogous to the type of ordinary diffraction grating in
which the lines are etched on the surface of a mirror (a reflection
grating) rather than the kind in which the light passes through the
transparent gaps between the lines (a transmission grating).

Although we will concentrate on the wave-particle duality of elec-
trons because it is important in chemistry and the physics of atoms,
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all the other “particles” of matter you’ve learned about show wave
properties as well. Figure a, for instance, shows a wave interference
pattern of neutrons.

It might seem as though all our work was already done for us,
and there would be nothing new to understand about electrons:
they have the same kind of funny wave-particle duality as photons.
That’s almost true, but not quite. There are some important ways
in which electrons differ significantly from photons:

1. Electrons have mass, and photons don’t.

2. Photons always move at the speed of light, but electrons can
move at any speed less than c.

3. Photons don’t have electric charge, but electrons do, so electric
forces can act on them. The most important example is the
atom, in which the electrons are held by the electric force of
the nucleus.

4. Electrons cannot be absorbed or emitted as photons are. De-
stroying an electron, or creating one out of nothing, would
violate conservation of charge.

(In chapter 36 we will learn of one more fundamental way in which
electrons differ from photons, for a total of five.)

a / A double-slit interference pat-
tern made with neutrons. (A.
Zeilinger, R. Gähler, C.G. Shull,
W. Treimer, and W. Mampe, Re-
views of Modern Physics, Vol. 60,
1988.)

Because electrons are different from photons, it is not immediately
obvious which of the photon equations from chapter 34 can be ap-
plied to electrons as well. A particle property, the energy of one
photon, is related to its wave properties via E = hf or, equivalently,
E = hc/λ. The momentum of a photon was given by p = hf/c or
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p = h/λ (example 3 on page 946). Ultimately it was a matter of ex-
periment to determine which of these equations, if any, would work
for electrons, but we can make a quick and dirty guess simply by
noting that some of the equations involve c, the speed of light, and
some do not. Since c is irrelevant in the case of an electron, we
might guess that the equations of general validity are those that do
not have c in them:

E = hf

p =
h

λ

This is essentially the reasoning that de Broglie went through, and
experiments have confirmed these two equations for all the funda-
mental building blocks of light and matter, not just for photons and
electrons.

The second equation, which I soft-pedaled in chapter 34, takes on
a greater importance for electrons. This is first of all because the
momentum of matter is more likely to be significant than the mo-
mentum of light under ordinary conditions, and also because force
is the transfer of momentum, and electrons are affected by electrical
forces.

The wavelength of an elephant example 1
. What is the wavelength of a trotting elephant?

. One may doubt whether the equation should be applied to an
elephant, which is not just a single particle but a rather large col-
lection of them. Throwing caution to the wind, however, we esti-
mate the elephant’s mass at 103 kg and its trotting speed at 10
m/s. Its wavelength is therefore roughly

λ =
h
p

=
h

mv

=
6.63× 10−34 J·s
(103 kg)(10 m/s)

∼ 10−37

(
kg·m2/s2)·s

kg·m/s
= 10−37 m .

The wavelength found in this example is so fantastically small that
we can be sure we will never observe any measurable wave phe-
nomena with elephants. The result is numerically small because
Planck’s constant is so small, and as in some examples encountered
previously, this smallness is in accord with the correspondence prin-
ciple.
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Although a smaller mass in the equation λ = h/mv does result in a
longer wavelength, the wavelength is still quite short even for indi-
vidual electrons under typical conditions, as shown in the following
example.

The typical wavelength of an electron example 2
. Electrons in circuits and in atoms are typically moving through
voltage differences on the order of 1 V, so that a typical energy is
(e)(1 V), which is on the order of 10−19 J. What is the wavelength
of an electron with this amount of kinetic energy?

. This energy is nonrelativistic, since it is much less than mc2.
Momentum and energy are therefore related by the nonrelativistic
equation K E = p2/2m. Solving for p and substituting in to the
equation for the wavelength, we find

λ =
h√

2m · K E
= 1.6× 10−9 m .

This is on the same order of magnitude as the size of an atom,
which is no accident: as we will discuss in the next chapter in
more detail, an electron in an atom can be interpreted as a stand-
ing wave. The smallness of the wavelength of a typical electron
also helps to explain why the wave nature of electrons wasn’t dis-
covered until a hundred years after the wave nature of light. To
scale the usual wave-optics devices such as diffraction gratings
down to the size needed to work with electrons at ordinary ener-
gies, we need to make them so small that their parts are compa-
rable in size to individual atoms. This is essentially what Davisson
and Germer did with their nickel crystal.

self-check A
These remarks about the inconvenient smallness of electron wavelengths
apply only under the assumption that the electrons have typical ener-
gies. What kind of energy would an electron have to have in order to
have a longer wavelength that might be more convenient to work with?
. Answer, p. 1011

What kind of wave is it?

If a sound wave is a vibration of matter, and a photon is a vibration
of electric and magnetic fields, what kind of a wave is an electron
made of? The disconcerting answer is that there is no experimen-
tal “observable,” i.e., directly measurable quantity, to correspond
to the electron wave itself. In other words, there are devices like
microphones that detect the oscillations of air pressure in a sound
wave, and devices such as radio receivers that measure the oscilla-
tion of the electric and magnetic fields in a light wave, but nobody
has ever found any way to measure an electron wave directly.

We can of course detect the energy (or momentum) possessed by an
electron just as we could detect the energy of a photon using a digital
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b / These two electron waves
are not distinguishable by any
measuring device.

camera. (In fact I’d imagine that an unmodified digital camera
chip placed in a vacuum chamber would detect electrons just as
handily as photons.) But this only allows us to determine where the
wave carries high probability and where it carries low probability.
Probability is proportional to the square of the wave’s amplitude,
but measuring its square is not the same as measuring the wave
itself. In particular, we get the same result by squaring either a
positive number or its negative, so there is no way to determine the
positive or negative sign of an electron wave.

Most physicists tend toward the school of philosophy known as op-
erationalism, which says that a concept is only meaningful if we can
define some set of operations for observing, measuring, or testing it.
According to a strict operationalist, then, the electron wave itself
is a meaningless concept. Nevertheless, it turns out to be one of
those concepts like love or humor that is impossible to measure and
yet very useful to have around. We therefore give it a symbol, Ψ
(the capital Greek letter psi), and a special name, the electron wave-
function (because it is a function of the coordinates x, y, and z that
specify where you are in space). It would be impossible, for exam-
ple, to calculate the shape of the electron wave in a hydrogen atom
without having some symbol for the wave. But when the calculation
produces a result that can be compared directly to experiment, the
final algebraic result will turn out to involve only Ψ2, which is what
is observable, not Ψ itself.

Since Ψ, unlike E and B, is not directly measurable, we are free to
make the probability equations have a simple form: instead of having
the probability distribution equal to some funny constant multiplied
by Ψ2, we simply define Ψ so that the constant of proportionality is
one:

(probability distribution) = Ψ2 .

Since the probability distribution has units of m−3, the units of Ψ
must be m−3/2.

Discussion question

A Frequency is oscillations per second, whereas wavelength is meters
per oscillation. How could the equations E = hf and p = h/λ be made
to look more alike by using quantities that were more closely analogous?
(This more symmetric treatment makes it easier to incorporate relativity
into quantum mechanics, since relativity says that space and time are not
entirely separate.)
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c / Part of an infinite sine wave.

35.2
∫
? Dispersive waves

A colleague of mine who teaches chemistry loves to tell the story
about an exceptionally bright student who, when told of the equa-
tion p = h/λ, protested, “But when I derived it, it had a factor of
2!” The issue that’s involved is a real one, albeit one that could be
glossed over (and is, in most textbooks) without raising any alarms
in the mind of the average student. The present optional section
addresses this point; it is intended for the student who wishes to
delve a little deeper.

Here’s how the now-legendary student was presumably reasoning.
We start with the equation v = fλ, which is valid for any sine
wave, whether it’s quantum or classical. Let’s assume we already
know E = hf , and are trying to derive the relationship between
wavelength and momentum:

λ =
v

f

=
vh

E

=
vh

1
2mv

2

=
2h

mv

=
2h

p

The reasoning seems valid, but the result does contradict the ac-
cepted one, which is after all solidly based on experiment.

The mistaken assumption is that we can figure everything out in
terms of pure sine waves. Mathematically, the only wave that has a
perfectly well defined wavelength and frequency is a sine wave, and
not just any sine wave but an infinitely long one, c. The unphysical
thing about such a wave is that it has no leading or trailing edge, so
it can never be said to enter or leave any particular region of space.
Our derivation made use of the velocity, v, and if velocity is to be a
meaningful concept, it must tell us how quickly stuff (mass, energy,
momentum,...) is transported from one region of space to another.
Since an infinitely long sine wave doesn’t remove any stuff from one
region and take it to another, the “velocity of its stuff” is not a well
defined concept.

Of course the individual wave peaks do travel through space, and
one might think that it would make sense to associate their speed
with the “speed of stuff,” but as we will see, the two velocities are
in general unequal when a wave’s velocity depends on wavelength.
Such a wave is called a dispersive wave, because a wave pulse consist-
ing of a superposition of waves of different wavelengths will separate
(disperse) into its separate wavelengths as the waves move through
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d / A finite-length sine wave.

e / A beat pattern created by
superimposing two sine waves
with slightly different wave-
lengths.

space at different speeds. Nearly all the waves we have encountered
have been nondispersive. For instance, sound waves and light waves
(in a vacuum) have speeds independent of wavelength. A water wave
is one good example of a dispersive wave. Long-wavelength water
waves travel faster, so a ship at sea that encounters a storm typi-
cally sees the long-wavelength parts of the wave first. When dealing
with dispersive waves, we need symbols and words to distinguish
the two speeds. The speed at which wave peaks move is called the
phase velocity, vp, and the speed at which “stuff” moves is called
the group velocity, vg.

An infinite sine wave can only tell us about the phase velocity, not
the group velocity, which is really what we would be talking about
when we referred to the speed of an electron. If an infinite sine wave
is the simplest possible wave, what’s the next best thing? We might
think the runner up in simplicity would be a wave train consisting
of a chopped-off segment of a sine wave, d. However, this kind of
wave has kinks in it at the end. A simple wave should be one that
we can build by superposing a small number of infinite sine waves,
but a kink can never be produced by superposing any number of
infinitely long sine waves.

Actually the simplest wave that transports stuff from place to place
is the pattern shown in figure e. Called a beat pattern, it is formed
by superposing two sine waves whose wavelengths are similar but
not quite the same. If you have ever heard the pulsating howling
sound of musicians in the process of tuning their instruments to each
other, you have heard a beat pattern. The beat pattern gets stronger
and weaker as the two sine waves go in and out of phase with each
other. The beat pattern has more “stuff” (energy, for example)
in the areas where constructive interference occurs, and less in the
regions of cancellation. As the whole pattern moves through space,
stuff is transported from some regions and into other ones.

If the frequency of the two sine waves differs by 10%, for instance,
then ten periods will be occur between times when they are in
phase. Another way of saying it is that the sinusoidal “envelope”
(the dashed lines in figure e) has a frequency equal to the difference
in frequency between the two waves. For instance, if the waves had
frequencies of 100 Hz and 110 Hz, the frequency of the envelope
would be 10 Hz.

To apply similar reasoning to the wavelength, we must define a
quantity z = 1/λ that relates to wavelength in the same way that
frequency relates to period. In terms of this new variable, the z of
the envelope equals the difference between the z’s of the two sine
waves.

The group velocity is the speed at which the envelope moves through
space. Let ∆f and ∆z be the differences between the frequencies and
z’s of the two sine waves, which means that they equal the frequency
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f / Three possible standing-
wave patterns for a particle in a
box.

and z of the envelope. The group velocity is vg = fenvelopeλenvelope =
∆f/∆z. If ∆f and ∆z are sufficiently small, we can approximate
this expression as a derivative,

vg =
df

dz
.

This expression is usually taken as the definition of the group veloc-
ity for wave patterns that consist of a superposition of sine waves
having a narrow range of frequencies and wavelengths. In quan-
tum mechanics, with f = E/h and z = p/h, we have vg = dE/dp.
In the case of a nonrelativistic electron the relationship between
energy and momentum is E = p2/2m, so the group velocity is
dE/dp = p/m = v, exactly what it should be. It is only the phase
velocity that differs by a factor of two from what we would have
expected, but the phase velocity is not the physically important
thing.

35.3 Bound states
Electrons are at their most interesting when they’re in atoms, that
is, when they are bound within a small region of space. We can
understand a great deal about atoms and molecules based on simple
arguments about such bound states, without going into any of the
realistic details of atom. The simplest model of a bound state is
known as the particle in a box: like a ball on a pool table, the
electron feels zero force while in the interior, but when it reaches
an edge it encounters a wall that pushes back inward on it with
a large force. In particle language, we would describe the electron
as bouncing off of the wall, but this incorrectly assumes that the
electron has a certain path through space. It is more correct to
describe the electron as a wave that undergoes 100% reflection at
the boundaries of the box.

Like a generation of physics students before me, I rolled my eyes
when initially introduced to the unrealistic idea of putting a parti-
cle in a box. It seemed completely impractical, an artificial textbook
invention. Today, however, it has become routine to study electrons
in rectangular boxes in actual laboratory experiments. The “box” is
actually just an empty cavity within a solid piece of silicon, amount-
ing in volume to a few hundred atoms. The methods for creating
these electron-in-a-box setups (known as “quantum dots”) were a
by-product of the development of technologies for fabricating com-
puter chips.

For simplicity let’s imagine a one-dimensional electron in a box,
i.e., we assume that the electron is only free to move along a line.
The resulting standing wave patterns, of which the first three are
shown in figure f, are just like some of the patterns we encountered
with sound waves in musical instruments. The wave patterns must
be zero at the ends of the box, because we are assuming the walls

Section 35.3 Bound states 965



g / The spectrum of the light
from the star Sirius. Photograph
by the author.

are impenetrable, and there should therefore be zero probability of
finding the electron outside the box. Each wave pattern is labeled
according to n, the number of peaks and valleys it has. In quan-
tum physics, these wave patterns are referred to as “states” of the
particle-in-the-box system.

The following seemingly innocuous observations about the particle
in the box lead us directly to the solutions to some of the most
vexing failures of classical physics:

The particle’s energy is quantized (can only have certain values).
Each wavelength corresponds to a certain momentum, and a given
momentum implies a definite kinetic energy, E = p2/2m. (This is
the second type of energy quantization we have encountered. The
type we studied previously had to do with restricting the number
of particles to a whole number, while assuming some specific wave-
length and energy for each particle. This type of quantization refers
to the energies that a single particle can have. Both photons and
matter particles demonstrate both types of quantization under the
appropriate circumstances.)

The particle has a minimum kinetic energy. Long wavelengths cor-
respond to low momenta and low energies. There can be no state
with an energy lower than that of the n = 1 state, called the ground
state.

The smaller the space in which the particle is confined, the higher
its kinetic energy must be. Again, this is because long wavelengths
give lower energies.

Spectra of thin gases example 3
A fact that was inexplicable by classical physics was that thin

gases absorb and emit light only at certain wavelengths. This
was observed both in earthbound laboratories and in the spectra
of stars. Figure g shows the example of the spectrum of the star
Sirius, in which there are “gap teeth” at certain wavelengths. Tak-
ing this spectrum as an example, we can give a straightforward
explanation using quantum physics.

Energy is released in the dense interior of the star, but the outer
layers of the star are thin, so the atoms are far apart and electrons
are confined within individual atoms. Although their standing-
wave patterns are not as simple as those of the particle in the
box, their energies are quantized.

When a photon is on its way out through the outer layers, it can be
absorbed by an electron in an atom, but only if the amount of en-
ergy it carries happens to be the right amount to kick the electron
from one of the allowed energy levels to one of the higher lev-
els. The photon energies that are missing from the spectrum are
the ones that equal the difference in energy between two elec-
tron energy levels. (The most prominent of the absorption lines in
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h / Example 5: Two hydro-
gen atoms bond to form an H2
molecule. In the molecule, the
two electrons’ wave patterns
overlap, and are about twice as
wide.

Sirius’s spectrum are absorption lines of the hydrogen atom.)

The stability of atoms example 4
In many Star Trek episodes the Enterprise, in orbit around a planet,
suddenly lost engine power and began spiraling down toward the
planet’s surface. This was utter nonsense, of course, due to con-
servation of energy: the ship had no way of getting rid of energy,
so it did not need the engines to replenish it.

Consider, however, the electron in an atom as it orbits the nu-
cleus. The electron does have a way to release energy: it has an
acceleration due to its continuously changing direction of motion,
and according to classical physics, any accelerating charged par-
ticle emits electromagnetic waves. According to classical physics,
atoms should collapse!

The solution lies in the observation that a bound state has a min-
imum energy. An electron in one of the higher-energy atomic
states can and does emit photons and hop down step by step in
energy. But once it is in the ground state, it cannot emit a photon
because there is no lower-energy state for it to go to.

Chemical bonds in hydrogen molecules example 5
I began this chapter with a classical argument that chemical

bonds, as in an H2 molecule, should not exist. Quantum physics
explains why this type of bonding does in fact occur. When the
atoms are next to each other, the electrons are shared between
them. The “box” is about twice as wide, and a larger box allows a
smaller energy. Energy is required in order to separate the atoms.
(A qualitatively different type of bonding is discussed in on page
995.)

Discussion questions

A Neutrons attract each other via the strong nuclear force, so according
to classical physics it should be possible to form nuclei out of clusters of
two or more neutrons, with no protons at all. Experimental searches,
however, have failed to turn up evidence of a stable two-neutron system
(dineutron) or larger stable clusters. These systems are apparently not
just unstable in the sense of being able to beta decay but unstable in
the sense that they don’t hold together at all. Explain based on quantum
physics why a dineutron might spontaneously fly apart.

B The following table shows the energy gap between the ground state
and the first excited state for four nuclei, in units of picojoules. (The nuclei
were chosen to be ones that have similar structures, e.g., they are all
spherical in shape.)

nucleus energy gap (picojoules)
4He 3.234
16O 0.968
40Ca 0.536
208Pb 0.418

Explain the trend in the data.
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i / Werner Heisenberg (1901-
1976). Heisenberg helped to
develop the foundations of quan-
tum mechanics, including the
Heisenberg uncertainty principle.
He was the scientific leader of
the Nazi atomic-bomb program
up until its cancellation in 1942,
when the military decided that it
was too ambitious a project to
undertake in wartime, and too
unlikely to produce results.

35.4 The uncertainty principle
The uncertainty principle

Eliminating randomness through measurement?

A common reaction to quantum physics, among both early-twentieth-
century physicists and modern students, is that we should be able to
get rid of randomness through accurate measurement. If I say, for
example, that it is meaningless to discuss the path of a photon or an
electron, you might suggest that we simply measure the particle’s
position and velocity many times in a row. This series of snapshots
would amount to a description of its path.

A practical objection to this plan is that the process of measure-
ment will have an effect on the thing we are trying to measure. This
may not be of much concern, for example, when a traffic cop mea-
sures your car’s motion with a radar gun, because the energy and
momentum of the radar pulses aren’t enough to change the car’s
motion significantly. But on the subatomic scale it is a very real
problem. Making a videotape of an electron orbiting a nucleus is
not just difficult, it is theoretically impossible, even with the video
camera hooked up to the best imaginable microscope. The video
camera makes pictures of things using light that has bounced off
them and come into the camera. If even a single photon of the
right wavelength was to bounce off of the electron we were trying to
study, the electron’s recoil would be enough to change its behavior
significantly (see homework problem 4).

The Heisenberg uncertainty principle

This insight, that measurement changes the thing being measured,
is the kind of idea that clove-cigarette-smoking intellectuals outside
of the physical sciences like to claim they knew all along. If only,
they say, the physicists had made more of a habit of reading literary
journals, they could have saved a lot of work. The anthropologist
Margaret Mead has recently been accused of inadvertently encour-
aging her teenaged Samoan informants to exaggerate the freedom of
youthful sexual experimentation in their society. If this is considered
a damning critique of her work, it is because she could have done
better: other anthropologists claim to have been able to eliminate
the observer-as-participant problem and collect untainted data.

The German physicist Werner Heisenberg, however, showed that
in quantum physics, any measuring technique runs into a brick wall
when we try to improve its accuracy beyond a certain point. Heisen-
berg showed that the limitation is a question of what there is to be
known, even in principle, about the system itself, not of the inabil-
ity of a particular measuring device to ferret out information that
is knowable.

Suppose, for example, that we have constructed an electron in a box
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(quantum dot) setup in our laboratory, and we are able to adjust
the length L of the box as desired. All the standing wave patterns
pretty much fill the box, so our knowledge of the electron’s position
is of limited accuracy. If we write ∆x for the range of uncertainty
in our knowledge of its position, then ∆x is roughly the same as the
length of the box:

∆x ≈ L

If we wish to know its position more accurately, we can certainly
squeeze it into a smaller space by reducing L, but this has an unin-
tended side-effect. A standing wave is really a superposition of two
traveling waves going in opposite directions. The equation p = h/λ
only gives the magnitude of the momentum vector, not its direc-
tion, so we should really interpret the wave as a 50/50 mixture of
a right-going wave with momentum p = h/λ and a left-going one
with momentum p = −h/λ. The uncertainty in our knowledge of
the electron’s momentum is ∆p = 2h/λ, covering the range between
these two values. Even if we make sure the electron is in the ground
state, whose wavelength λ = 2L is the longest possible, we have an
uncertainty in momentum of ∆p = h/L. In general, we find

∆p & h/L ,

with equality for the ground state and inequality for the higher-
energy states. Thus if we reduce L to improve our knowledge of the
electron’s position, we do so at the cost of knowing less about its
momentum. This trade-off is neatly summarized by multiplying the
two equations to give

∆p∆x & h .

Although we have derived this in the special case of a particle in a
box, it is an example of a principle of more general validity:

the Heisenberg uncertainty principle
It is not possible, even in principle, to know the momentum and the
position of a particle simultaneously and with perfect accuracy. The
uncertainties in these two quantities are always such that

∆p∆x & h .

(This approximation can be made into a strict inequality, ∆p∆x >
h/4π, but only with more careful definitions, which we will not
bother with.1)

Note that although I encouraged you to think of this derivation
in terms of a specific real-world system, the quantum dot, I never

1See homework problems 6 and 7.
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made any reference to specific measuring equipment. The argument
is simply that we cannot know the particle’s position very accurately
unless it has a very well defined position, it cannot have a very well
defined position unless its wave-pattern covers only a very small
amount of space, and its wave-pattern cannot be thus compressed
without giving it a short wavelength and a correspondingly uncer-
tain momentum. The uncertainty principle is therefore a restriction
on how much there is to know about a particle, not just on what we
can know about it with a certain technique.

An estimate for electrons in atoms example 6
. A typical energy for an electron in an atom is on the order of
(1 volt)·e, which corresponds to a speed of about 1% of the speed
of light. If a typical atom has a size on the order of 0.1 nm, how
close are the electrons to the limit imposed by the uncertainty
principle?

. If we assume the electron moves in all directions with equal
probability, the uncertainty in its momentum is roughly twice its
typical momentum. This only an order-of-magnitude estimate, so
we take ∆p to be the same as a typical momentum:

∆p∆x = ptypical∆x

= (melectron)(0.01c)(0.1× 10−9 m)

= 3× 10−34 J·s

This is on the same order of magnitude as Planck’s constant, so
evidently the electron is “right up against the wall.” (The fact that
it is somewhat less than h is of no concern since this was only an
estimate, and we have not stated the uncertainty principle in its
most exact form.)

self-check B
If we were to apply the uncertainty principle to human-scale objects,
what would be the significance of the small numerical value of Planck’s
constant? . Answer, p. 1012

self-check C
Suppose rain is falling on your roof, and there is a tiny hole that lets
raindrops into your living room now and then. All these drops hit the
same spot on the floor, so they have the same value of x . Not only
that, but if the rain is falling straight down, they all have zero horizontal
momentum. Thus it seems that the raindrops have ∆p = 0, ∆x = 0,
and ∆p∆x = 0, violating the uncertainty principle. To look for the hole in
this argument, consider how it would be acted out on the microscopic
scale: an electron wave comes along and hits a narrow slit. What really
happens? . Answer, p. 1012

Measurement and Schrödinger’s cat

In chapter 34 I briefly mentioned an issue concerning measurement
that we are now ready to address carefully. If you hang around a
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j / Schrödinger’s cat.

laboratory where quantum-physics experiments are being done and
secretly record the physicists’ conversations, you’ll hear them say
many things that assume the probability interpretation of quantum
mechanics. Usually they will speak as though the randomness of
quantum mechanics enters the picture when something is measured.
In the digital camera experiments of chapter 34, for example, they
would casually describe the detection of a photon at one of the pixels
as if the moment of detection was when the photon was forced to
“make up its mind.” Although this mental cartoon usually works
fairly well as a description of things one experiences in the lab, it
cannot ultimately be correct, because it attributes a special role to
measurement, which is really just a physical process like all other
physical processes.2

If we are to find an interpretation that avoids giving any special role
to measurement processes, then we must think of the entire labo-
ratory, including the measuring devices and the physicists them-
selves, as one big quantum-mechanical system made out of protons,
neutrons, electrons, and photons. In other words, we should take
quantum physics seriously as a description not just of microscopic
objects like atoms but of human-scale (“macroscopic”) things like
the apparatus, the furniture, and the people.

The most celebrated example is called the Schrödinger’s cat experi-
ment. Luckily for the cat, there probably was no actual experiment
— it was simply a “thought experiment” that the German theorist
Schrödinger discussed with his colleagues. Schrödinger wrote:

One can even construct quite burlesque cases. A cat is shut up in a steel
container, together with the following diabolical apparatus (which one
must keep out of the direct clutches of the cat): In a [radiation detector]
there is a tiny mass of radioactive substance, so little that in the course
of an hour perhaps one atom of it disintegrates, but also with equal
probability not even one; if it does happen, the [detector] responds and
... activates a hammer that shatters a little flask of prussic acid [filling
the chamber with poison gas]. If one has left this entire system to itself
for an hour, then one will say to himself that the cat is still living, if
in that time no atom has disintegrated. The first atomic disintegration
would have poisoned it.

Now comes the strange part. Quantum mechanics says that the
particles the cat is made of have wave properties, including the
property of superposition. Schrödinger describes the wavefunction
of the box’s contents at the end of the hour:

The wavefunction of the entire system would express this situation by
having the living and the dead cat mixed ... in equal parts [50/50 pro-
portions]. The uncertainty originally restricted to the atomic domain
has been transformed into a macroscopic uncertainty...

2This interpretation of quantum mechanics is called the Copenhagen inter-
pretation, because it was originally developed by a school of physicists centered
in Copenhagen and led by Niels Bohr.
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k / An electron in a gentle
electric field gradually shortens
its wavelength as it gains energy.

At first Schrödinger’s description seems like nonsense. When you
opened the box, would you see two ghostlike cats, as in a doubly
exposed photograph, one dead and one alive? Obviously not. You
would have a single, fully material cat, which would either be dead
or very, very upset. But Schrödinger has an equally strange and
logical answer for that objection. In the same way that the quantum
randomness of the radioactive atom spread to the cat and made its
wavefunction a random mixture of life and death, the randomness
spreads wider once you open the box, and your own wavefunction
becomes a mixture of a person who has just killed a cat and a person
who hasn’t.3

Discussion questions

A Compare ∆p and ∆x for the two lowest energy levels of the one-
dimensional particle in a box, and discuss how this relates to the uncer-
tainty principle.

B On a graph of ∆p versus ∆x, sketch the regions that are allowed and
forbidden by the Heisenberg uncertainty principle. Interpret the graph:
Where does an atom lie on it? An elephant? Can either p or x be mea-
sured with perfect accuracy if we don’t care about the other?

35.5 Electrons in electric fields

So far the only electron wave patterns we’ve considered have been
simple sine waves, but whenever an electron finds itself in an electric
field, it must have a more complicated wave pattern. Let’s consider
the example of an electron being accelerated by the electron gun at
the back of a TV tube. The electron is moving from a region of low
voltage into a region of higher voltage. Since its charge is negative,
it loses PE by moving to a higher voltage, so its KE increases. As
its potential energy goes down, its kinetic energy goes up by an
equal amount, keeping the total energy constant. Increasing kinetic
energy implies a growing momentum, and therefore a shortening
wavelength, k.

The wavefunction as a whole does not have a single well-defined
wavelength, but the wave changes so gradually that if you only look
at a small part of it you can still pick out a wavelength and relate
it to the momentum and energy. (The picture actually exagger-
ates by many orders of magnitude the rate at which the wavelength
changes.)

But what if the electric field was stronger? The electric field in a TV
is only ∼ 105 N/C, but the electric field within an atom is more like
1012 N/C. In figure l, the wavelength changes so rapidly that there
is nothing that looks like a sine wave at all. We could get a general
idea of the wavelength in a given region by measuring the distance

3This interpretation, known as the many-worlds interpretation, was developed
by Hugh Everett in 1957.
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m / 1. Kinks like this don’t
happen. 2. The wave actually
penetrates into the classically
forbidden region.

between two peaks, but that would only be a rough approximation.
Suppose we want to know the wavelength at point P. The trick is
to construct a sine wave, like the one shown with the dashed line,
which matches the curvature of the actual wavefunction as closely
as possible near P. The sine wave that matches as well as possible is
called the “osculating” curve, from a Latin word meaning “to kiss.”
The wavelength of the osculating curve is the wavelength that will
relate correctly to conservation of energy.

l / A typical wavefunction of an electron in an atom (heavy curve)
and the osculating sine wave (dashed curve) that matches its curvature
at point P.

Tunneling

We implicitly assumed that the particle-in-a-box wavefunction would
cut off abruptly at the sides of the box, m/1, but that would be un-
physical. A kink has infinite curvature, and curvature is related to
energy, so it can’t be infinite. A physically realistic wavefunction
must always “tail off” gradually, m/2. In classical physics, a parti-
cle can never enter a region in which its potential energy would be
greater than the amount of energy it has available. But in quantum
physics the wavefunction will always have a tail that reaches into
the classically forbidden region. If it was not for this effect, called
tunneling, the fusion reactions that power the sun would not occur
due to the high potential energy that nuclei need in order to get
close together! Tunneling is discussed in more detail in the next
section.

35.6
∫
? The Schrödinger equation

In section 35.5 we were able to apply conservation of energy to
an electron’s wavefunction, but only by using the clumsy graphical
technique of osculating sine waves as a measure of the wave’s cur-
vature. You have learned a more convenient measure of curvature
in calculus: the second derivative. To relate the two approaches, we
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take the second derivative of a sine wave:

d2

dx2
sin

(
2πx

λ

)
=

d

dx

(
2π

λ
cos

2πx

λ

)
= −

(
2π

λ

)2

sin
2πx

λ

Taking the second derivative gives us back the same function, but
with a minus sign and a constant out in front that is related to
the wavelength. We can thus relate the second derivative to the
osculating wavelength:

[1]
d2 Ψ

dx2
= −

(
2π

λ

)2

Ψ

This could be solved for λ in terms of Ψ, but it will turn out to be
more convenient to leave it in this form.

Using conservation of energy, we have

E = KE + PE

=
p2

2m
+ PE

=
(h/λ)2

2m
+ PE

[2]

Note that both equation [1] and equation [2] have λ2 in the denom-
inator. We can simplify our algebra by multiplying both sides of
equation [2] by Ψ to make it look more like equation [1]:

E ·Ψ =
(h/λ)2

2m
Ψ + PE ·Ψ

=
1

2m

(
h

2π

)2(2π

λ

)2

Ψ + PE ·Ψ

= − 1

2m

(
h

2π

)2 d2 Ψ

dx2
+ PE ·Ψ

Further simplification is achieved by using the symbol ~ (h with a
slash through it, read “h-bar”) as an abbreviation for h/2π. We then
have the important result known as the Schrödinger equation:

E ·Ψ = − ~
2

2m

d2 Ψ

dx2
+ PE ·Ψ

(Actually this is a simplified version of the Schrödinger equation,
applying only to standing waves in one dimension.) Physically it is
a statement of conservation of energy. The total energy E must be
constant, so the equation tells us that a change in potential energy
must be accompanied by a change in the curvature of the wavefunc-
tion. This change in curvature relates to a change in wavelength,
which corresponds to a change in momentum and kinetic energy.
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n / Tunneling through a bar-
rier.

self-check D
Considering the assumptions that were made in deriving the Schrödinger
equation, would it be correct to apply it to a photon? To an electron mov-
ing at relativistic speeds? . Answer, p.
1012

Usually we know right off the bat how the potential energy de-
pends on x, so the basic mathematical problem of quantum physics
is to find a function Ψ(x) that satisfies the Schrödinger equation
for a given function PE(x). An equation, such as the Schrödinger
equation, that specifies a relationship between a function and its
derivatives is known as a differential equation.

The study of differential equations in general is beyond the mathe-
matical level of this book, but we can gain some important insights
by considering the easiest version of the Schrödinger equation, in
which the potential energy is constant. We can then rearrange the
Schrödinger equation as follows:

d2 Ψ

dx2
=

2m(PE − E)

~2
Ψ ,

which boils down to

d2 Ψ

dx2
= aΨ ,

where, according to our assumptions, a is independent of x. We need
to find a function whose second derivative is the same as the original
function except for a multiplicative constant. The only functions
with this property are sine waves and exponentials:

d2

dx2
[ q sin(rx+ s) ] = −qr2 sin(rx+ s)

d2

dx2

[
qerx+s

]
= qr2erx+s

The sine wave gives negative values of a, a = −r2, and the exponen-
tial gives positive ones, a = r2. The former applies to the classically
allowed region with PE < E.

This leads us to a quantitative calculation of the tunneling effect
discussed briefly in the preceding subsection. The wavefunction ev-
idently tails off exponentially in the classically forbidden region.
Suppose, as shown in figure n, a wave-particle traveling to the right
encounters a barrier that it is classically forbidden to enter. Al-
though the form of the Schrödinger equation we’re using technically
does not apply to traveling waves (because it makes no reference
to time), it turns out that we can still use it to make a reasonable
calculation of the probability that the particle will make it through
the barrier. If we let the barrier’s width be w, then the ratio of the
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wavefunction on the left side of the barrier to the wavefunction on
the right is

qerx+s

qer(x+w)+s
= e−rw .

Probabilities are proportional to the squares of wavefunctions, so
the probability of making it through the barrier is

P = e−2rw

= exp

(
−2w

~
√

2m(PE − E)

)

self-check E
If we were to apply this equation to find the probability that a person can
walk through a wall, what would the small value of Planck’s constant
imply? . Answer, p. 1012

Use of complex numbers

In a classically forbidden region, a particle’s total energy, PE+KE,
is less than its PE, so its KE must be negative. If we want to
keep believing in the equation KE = p2/2m, then apparently the
momentum of the particle is the square root of a negative number.
This is a symptom of the fact that the Schrödinger equation fails
to describe all of nature unless the wavefunction and various other
quantities are allowed to be complex numbers. In particular it is not
possible to describe traveling waves correctly without using complex
wavefunctions.

This may seem like nonsense, since real numbers are the only ones
that are, well, real! Quantum mechanics can always be related to the
real world, however, because its structure is such that the results of
measurements always come out to be real numbers. For example, we
may describe an electron as having non-real momentum in classically
forbidden regions, but its average momentum will always come out
to be real (the imaginary parts average out to zero), and it can never
transfer a non-real quantity of momentum to another particle.

A complete investigation of these issues is beyond the scope of this
book, and this is why we have normally limited ourselves to standing
waves, which can be described with real-valued wavefunctions.
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Summary
Selected vocabulary
wavefunction . . the numerical measure of an electron wave, or

in general of the wave corresponding to any
quantum mechanical particle

Notation
~ . . . . . . . . . . Planck’s constant divided by 2π (used only in

optional section 35.6)
Ψ . . . . . . . . . the wavefunction of an electron

Summary

Light is both a particle and a wave. Matter is both a particle and a
wave. The equations that connect the particle and wave properties
are the same in all cases:

E = hf

p = h/λ

Unlike the electric and magnetic fields that make up a photon-
wave, the electron wavefunction is not directly measurable. Only
the square of the wavefunction, which relates to probability, has
direct physical significance.

A particle that is bound within a certain region of space is a standing
wave in terms of quantum physics. The two equations above can
then be applied to the standing wave to yield some important general
observations about bound particles:

1. The particle’s energy is quantized (can only have certain val-
ues).

2. The particle has a minimum energy.

3. The smaller the space in which the particle is confined, the
higher its kinetic energy must be.

These immediately resolve the difficulties that classical physics had
encountered in explaining observations such as the discrete spectra
of atoms, the fact that atoms don’t collapse by radiating away their
energy, and the formation of chemical bonds.

A standing wave confined to a small space must have a short wave-
length, which corresponds to a large momentum in quantum physics.
Since a standing wave consists of a superposition of two traveling
waves moving in opposite directions, this large momentum should
actually be interpreted as an equal mixture of two possible mo-
menta: a large momentum to the left, or a large momentum to the
right. Thus it is not possible for a quantum wave-particle to be
confined to a small space without making its momentum very un-
certain. In general, the Heisenberg uncertainty principle states that
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it is not possible to know the position and momentum of a particle
simultaneously with perfect accuracy. The uncertainties in these
two quantities must satisfy the approximate inequality

∆p∆x & h .

When an electron is subjected to electric forces, its wavelength can-
not be constant. The “wavelength” to be used in the equation
p = h/λ should be thought of as the wavelength of the sine wave
that most closely approximates the curvature of the wavefunction
at a specific point.

Infinite curvature is not physically possible, so realistic wavefunc-
tions cannot have kinks in them, and cannot just cut off abruptly
at the edge of a region where the particle’s energy would be in-
sufficient to penetrate according to classical physics. Instead, the
wavefunction “tails off” in the classically forbidden region, and as a
consequence it is possible for particles to “tunnel” through regions
where according to classical physics they should not be able to pen-
etrate. If this quantum tunneling effect did not exist, there would
be no fusion reactions to power our sun, because the energies of
the nuclei would be insufficient to overcome the electrical repulsion
between them.

Exploring further

The New World of Mr. Tompkins: George Gamow’s Clas-
sic Mr. Tompkins in Paperback, George Gamow. Mr. Tomp-
kins finds himself in a world where the speed of light is only 30 miles
per hour, making relativistic effects obvious. Later parts of the book
play similar games with Planck’s constant.

The First Three Minutes: A Modern View of the Origin of
the Universe, Steven Weinberg. Surprisingly simple ideas allow
us to understand the infancy of the universe surprisingly well.

Three Roads to Quantum Gravity, Lee Smolin. The great-
est embarrassment of physics today is that we are unable to fully
reconcile general relativity (the theory of gravity) with quantum
mechanics. This book does a good job of introducing the lay reader
to a difficult, speculative subject, and showing that even though
we don’t have a full theory of quantum gravity, we do have a clear
outline of what such a theory must look like.

978 Chapter 35 Matter as a wave



Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 In a television, suppose the electrons are accelerated from rest
through a voltage difference of 104 V. What is their final wavelength?√

2 Use the Heisenberg uncertainty principle to estimate the
minimum velocity of a proton or neutron in a 208Pb nucleus, which
has a diameter of about 13 fm (1 fm = 10−15 m). Assume that
the speed is nonrelativistic, and then check at the end whether this
assumption was warranted.

√

3 A free electron that contributes to the current in an ohmic
material typically has a speed of 105 m/s (much greater than the
drift velocity).
(a) Estimate its de Broglie wavelength, in nm.

√

(b) If a computer memory chip contains 108 electric circuits in a
1 cm2 area, estimate the linear size, in nm, of one such circuit.

√

(c) Based on your answers from parts a and b, does an electrical
engineer designing such a chip need to worry about wave effects
such as diffraction?
(d) Estimate the maximum number of electric circuits that can fit on
a 1 cm2 computer chip before quantum-mechanical effects become
important.

4 On page 968, I discussed the idea of hooking up a video
camera to a visible-light microscope and recording the trajectory of
an electron orbiting a nucleus. An electron in an atom typically has
a speed of about 1% of the speed of light.
(a) Calculate the momentum of the electron.

√

(b) When we make images with photons, we can’t resolve details
that are smaller than the photons’ wavelength. Suppose we wanted
to map out the trajectory of the electron with an accuracy of 0.01
nm. What part of the electromagnetic spectrum would we have to
use?
(c) As found in homework problem 12 on page 787, the momentum
of a photon is given by p = E/c. Estimate the momentum of a
photon having the necessary wavelength.

√

(d) Comparing your answers from parts a and c, what would be the
effect on the electron if the photon bounced off of it? What does
this tell you about the possibility of mapping out an electron’s orbit
around a nucleus?
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5 Find the energy of a particle in a one-dimensional box of length
L, expressing your result in terms of L, the particle’s mass m, the
number of peaks and valleys n in the wavefunction, and fundamental
constants.

√

6 The Heisenberg uncertainty principle, ∆p∆x & h, can only be
made into a strict inequality if we agree on a rigorous mathematical
definition of ∆x and ∆p. Suppose we define the deltas in terms of the
full width at half maximum (FWHM), which we first encountered
on p. 467 and revisited on page 923 of this book. Now consider
the lowest-energy state of the one-dimensional particle in a box. As
argued on page 969, the momentum has equal probability of being
h/L or −h/L, so the FWHM definition gives ∆p = 2h/L.
(a) Find ∆x using the FWHM definition. Keep in mind that the
probability distribution depends on the square of the wavefunction.
(b) Find ∆x∆p.

√

7 If x has an average value of zero, then the standard deviation
of the probability distribution D(x) is defined by

σ2 =

√∫
D(x)x2 dx ,

where the integral ranges over all possible values of x.

Interpretation: if x only has a high probability of having values close
to the average (i.e., small positive and negative values), the thing
being integrated will always be small, because x2 is always a small
number; the standard deviation will therefore be small. Squaring
x makes sure that either a number below the average (x < 0) or a
number above the average (x > 0) will contribute a positive amount
to the standard deviation. We take the square root of the whole
thing so that it will have the same units as x, rather than having
units of x2.

Redo problem 6 using the standard deviation rather than the FWHM.

Hints: (1) You need to determine the amplitude of the wave based
on normalization. (2) You’ll need the following definite integral:∫ π/2
−π/2 u

2 cos2 udu = (π3 − 6π)/24.
√ ∫

8 In section 35.6 we derived an expression for the probability
that a particle would tunnel through a rectangular potential bar-
rier. Generalize this to a barrier of any shape. [Hints: First try
generalizing to two rectangular barriers in a row, and then use a
series of rectangular barriers to approximate the actual curve of an
arbitrary potential. Note that the width and height of the barrier in
the original equation occur in such a way that all that matters is the
area under the PE-versus-x curve. Show that this is still true for
a series of rectangular barriers, and generalize using an integral.] If
you had done this calculation in the 1930’s you could have become
a famous physicist.

∫
?
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9 The electron, proton, and neutron were discovered, respec-
tively, in 1897, 1919, and 1932. The neutron was late to the party,
and some physicists felt that it was unnecessary to consider it as
fundamental. Maybe it could be explained as simply a proton with
an electron trapped inside it. The charges would cancel out, giving
the composite particle the correct neutral charge, and the masses
at least approximately made sense (a neutron is heavier than a pro-
ton). (a) Given that the diameter of a proton is on the order of
10−15 m, use the Heisenberg uncertainty principle to estimate the
trapped electron’s minimum momentum.

√

(b) Find the electron’s minimum kinetic energy.
√

(c) Show via E = mc2 that the proposed explanation fails, because
the contribution to the neutron’s mass from the electron’s kinetic
energy would be many orders of magnitude too large.
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