
Chemistry 4631 Instrumental Analysis Lecture LEDs

JV.

Sources

- Blue light-emitting diodes (LEDs)
 Emit at 450-475 nm
 - Use a pn junction under forward bias to produce radiant energy
 - The diodes are made from gallium nitride (λ = 465 nm) or indium gallium nitride (λ = 450 nm)

Advantages of Light Emitting Diodes (LEDs)

Longevity:

The light emitting element in a diode is a small conductor chip rather than a filament which greatly extends the diode's life in comparison to an incandescent bulb (10 000 hours life time compared to ~1000 hours for incandescence light bulb)

Efficiency: (Presently High 25--30 Lumens/Watt)

Diodes emit almost no heat and run at very low amperes

Lower energy consumption

Smaller size

Red 10x Better that (filtered) incandescent

White 2x better than incandescent

Potential efficiency 150+ Lumens/Watt (2x better than fluorescent)

Chem 4631

Greater Light Intensity:

Since each diode emits its own light

Advantages of Light Emitting Diodes (LEDs)

Cost:

Coming down

Robustness:

Solid state component, not as fragile as incandescence light bulb No catastrophic failures *Environmentally friendly:* Minimal disposal required No mercury

General Structure

A simple LED is a pn junction on a suitable

substrate. Light output p n^+ Substrate n^+

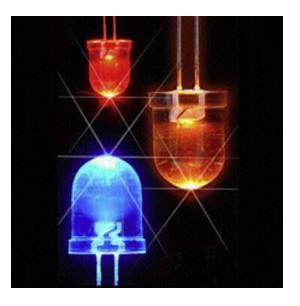


Fig. 6.44: A schematic illustration of one possible LED device structure. First n^+ is epitaxially grown on a substrate. A thin p layer is then epitaxially grown on the first layer.

From Principles of Electronic Materials and Devices, Second Edition, S.O. Kasap (© McGraw-Hill, 2002) http://Materials.Usask.Ca

- LEDs are semiconductor p-n junctions that under forward bias conditions can emit radiation by electroluminescence in the UV, visible or infrared regions of the electromagnetic spectrum.
 - When pn junction is forward biased, large number of carriers are injected across the junctions. These carriers recombine and emit light.
- The quanta of light energy released is approximately proportional to the band gap of the semiconductor.
- The emitted photons must escape without being reabsorbed, so the p-side has to be narrow.

A typical LED needs a p-n junction

There are a lot of electrons and holes at the junction due to excitations

Electrons from n need to be injected to p to promote recombination

Junction is biased to produce even more e-h and to inject electrons from n to p for recombination to happen Recombination produces light!!

Efficient LED

- Need a **p-n junction** (preferably the same semiconductor material only different dopants).
 - **Recombination must occur** \rightarrow Radiative transmission to give out the correct color.
 - Color of LED $\rightarrow hc/\lambda = E_c E_v = E_g$ \rightarrow so choose material with the right E_g
- **Direct band gap** semiconductors to allow efficient recombination.

- All photons created must be able to leave the semiconductor.
- Little or **no reabsorption** of photons.

Visible LED

LED to emit visible light, the band gap of the materials that are used must be in the region of visible wavelength = 390 - 770nm. This coincides with the energy value of 3.18eV- 1.61eV which corresponds to the colour spectrum.

Colour the LED should emit Violet ~ 3.17eV Blue ~ 2.73eV Green ~ 2.52eV Yellow ~ 2.15eV Orange ~ 2.08eV Red ~ 1.62eV The band gap, E_g that the semiconductor must possess to emit each light

The nitrides and blue LED

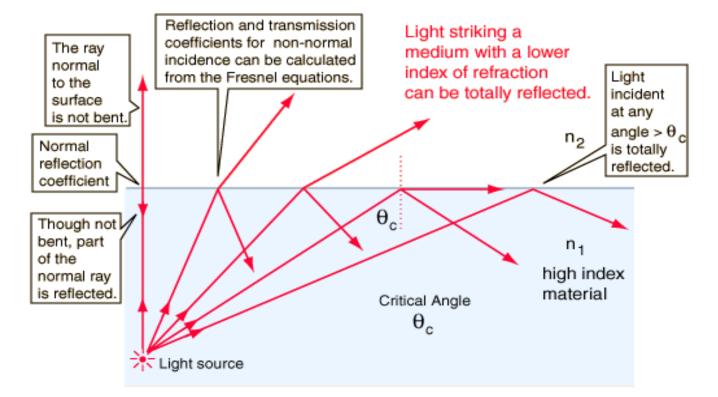
- Difficulties:
 - to find suitable substrates for the nitrides
 - to get p-type nitrides
- But with constant R&D work, better materials are produced
- GaN, InGaN, AlGaN → high efficiency LEDs emitting blue/green part of the spectrum.

- First blue LED 1994 Shuji & Nakamura (10 000 hours lifetime)
- SiC can also be used as blue LED SiC on GaN substrate

Sources

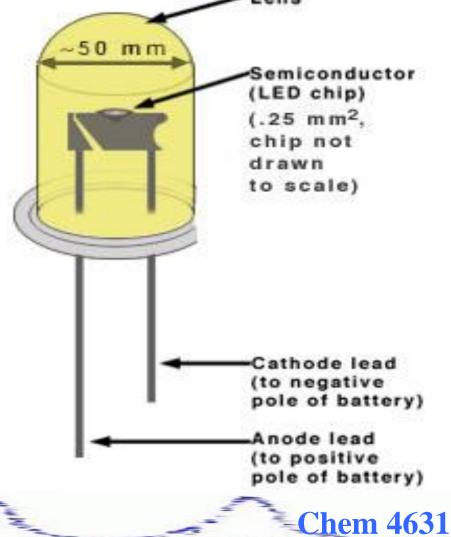
- Blue light-emitting diodes (LEDs)
- **Important parameter -quantum efficiency (η): a number of photons generated per electron-hole pairs**

Factors which determine quantum efficiency Efficiency of radiative recombination Internal losses (due to recombination in the depletion region)

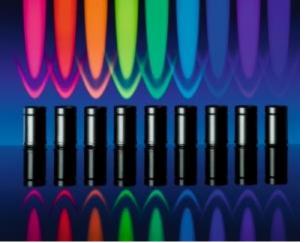

Sources

• Blue light-emitting diodes (LEDs)

The quantum efficiency


• Internal quantum efficiency of some LEDs approaches 100% but the *external efficiencies* are much lower. This is due to reabsorption and TIR (Total internal reflectance).

Total Internal Reflection



LED Light Sources: A Major Advance in Fluorescence Microscopy

Benefits of LEDs, include compact size, low power consumption, minimal heat output, high emission stability and extremely long life span.

Ten different LED modules which can be easily exchanged are currently available from UV to dark red.

Assignment