#### Chemistry 4631

#### Instrumental Analysis Lecture 5



#### The Electromagnetic Spectrum





**Molar Absorptivities Range 0 to 10<sup>5</sup>** 

> Magnitude of  $\varepsilon$  depends on capture cross section of the species and probability of the energy-absorbing transition.

> > **Chem 4631**

 $\varepsilon = 8.7 \times 10^{19} P A$ 

**P** – transition probability

A – cross-section target area, cm<sup>2</sup>

Molar Absorptivities  $\varepsilon = 8.7 \times 10^{19} P A$  P - transition probabilityA - cross-section target area, cm<sup>2</sup>

Typical area for organic molecules are ~  $10^{-15}$  cm<sup>2</sup> P – range from 0 to 1 quantum allowed 0.1 to 1 ( $\varepsilon_{max} = 10^4$  to  $10^5$ ) Less than  $10^3$  – gives low intensity

**Absorbing Species** 

Absorption of UV/vis radiation is a two step process:

M + hv → M\* (electronic excitation) M\* lifetime ~  $10^{-8}$  to  $10^{-9}$  sec M\* → M + heat (relaxation)

#### **Absorbing Species**

#### **Relaxation occurs by:**

- Conversion to heat
- Decomposition of M\* (photochemical rxn)
- Reemission of fluorescence or phosphorescence

#### **Absorbing Species**

**Absorption occurs by excitation of bonding electrons** 

i.e.  $\lambda$  correlates to type of bond in species Valuable in identifying functional groups

**Absorbing Species** 

Three types of electronic transitions:

-π, σ, and n electrons
-d and f electrons
-charge transfer electrons

Absorbing Species that contain  $\pi$ ,  $\sigma$ , and n electrons are:

- Organic molecules
- Organic ions
- Many inorganic anions

Absorption of UV above the vacuum UV region is limited to functional groups (chromophores) that contain valence electrons at low excitation energies.

**Types of Absorbing Electrons Electrons of organic molecules** contributing to absorption are: - Those in bond formation between atoms Nonbonding or unshared outer electrons that are localized (i.e. oxygen, halogens, sulfur, nitrogen)

Two atomic orbitals combine to produce: – Low energy bonding molecular orbital – High energy antibonding molecular orbital

Single bonds – sigma ( $\sigma$ ) orbitals Double bonds – sigma ( $\sigma$ ) and pi ( $\pi$ ) orbitals Nonbonding electrons - n



**Figure 14-1** Electron distribution in sigma and pi molecular orbitals.



**Chem 4631** 

**Figure 14-2** Types of molecular orbitals in formaldehyde.



#### $\sigma \rightarrow \sigma^*$ Transitions

Energy to promote a transition is large needing far UV. Examples: C-H bonds in methane seen at 125 nm. C-C bonds in ethane at 135 nm.

#### $n \rightarrow \sigma^*$ Transitions

Occur in compounds containing atoms with unshared electrons. Absorption region 150 to 250 nm

**TABLE 14-1**Some Examples of Absorption due<br/>to  $n \rightarrow \sigma^*$  Transitions<sup>a</sup>

| Compound                          | $\lambda_{max}(\mathbf{nm})$ | € <sub>max</sub> |  |
|-----------------------------------|------------------------------|------------------|--|
| H <sub>2</sub> O                  | 167                          | 1480             |  |
| CH <sub>3</sub> OH                | 184                          | 150              |  |
| CH <sub>3</sub> Cl                | 173                          | 200              |  |
| CH <sub>3</sub> I                 | 258                          | 365              |  |
| $(CH_3)_2S^b$                     | 229                          | 140              |  |
| (CH <sub>3</sub> ) <sub>2</sub> O | 184                          | 2520             |  |
| CH <sub>3</sub> NH <sub>2</sub>   | 215                          | 600              |  |
| (CH <sub>3</sub> ) <sub>3</sub> N | 227                          | 900              |  |

<sup>*a*</sup>Samples in vapor state. <sup>*b*</sup>In ethanol solvent.

-Chem 4631

<u> $n \rightarrow \pi^*$  and  $\pi \rightarrow \pi^*$  Transitions</u> Absorption region 200 – 700 nm Transition requires presence of unsaturated functional groups to provide  $\pi$  orbitals.

| Chromophore | Example                                           | Solvent           | $\lambda_{\max}$ , nm | $\boldsymbol{arepsilon_{\max}}$ | Transition Type                  |
|-------------|---------------------------------------------------|-------------------|-----------------------|---------------------------------|----------------------------------|
| Alkene      | C <sub>6</sub> H <sub>13</sub> CH=CH <sub>2</sub> | <i>n</i> -Heptane | 177                   | 13,000                          | $\pi \mathop{\rightarrow} \pi^*$ |
| Alkyne      | $C_5H_{11}C \equiv C - CH_3$                      | n-Heptane         | 178                   | 10,000                          | $\pi \! \rightarrow \! \pi^*$    |
| 10.02       |                                                   |                   | 196                   | 2000                            | —                                |
|             |                                                   |                   | 225                   | 160                             | —                                |
| Carbonyl    | CH <sub>3</sub> CCH <sub>3</sub>                  | n-Hexane          | 186                   | 1000                            | $n \rightarrow \sigma^*$         |
|             | 0                                                 |                   | 280                   | 16                              | $n \rightarrow \pi^*$            |
|             | CH <sub>3</sub> CH                                | <i>n</i> -Hexane  | 180                   | large                           | $n \rightarrow \sigma^*$         |
|             | O                                                 |                   | 293                   | 12                              | $n \mathop{\rightarrow} \pi^*$   |
| Carboxyl    | CH <sub>3</sub> COOH                              | Ethanol           | 204                   | 41                              | $n \!  ightarrow \! \pi^*$       |
| Amido       | CH <sub>3</sub> CNH <sub>2</sub>                  | Water             | 214                   | 60                              | $n \rightarrow \pi^*$            |
| Azo         | CH <sub>3</sub> N=NCH <sub>3</sub>                | Ethanol           | 339                   | 5                               | $n \!  ightarrow \! \pi^*$       |
| Nitro       | CH <sub>3</sub> NO <sub>2</sub>                   | Isooctane         | 280                   | 22                              | $n \!  ightarrow \! \pi^*$       |
| Nitroso     | C <sub>4</sub> H <sub>9</sub> NO                  | Ethyl ether       | 300                   | 100                             | —                                |
|             |                                                   |                   | 665                   | 20                              | $n \!  ightarrow \! \pi^*$       |
| Nitrate     | C <sub>2</sub> H <sub>5</sub> ONO <sub>2</sub>    | Dioxane           | 270                   | 12                              | $n \rightarrow \pi^*$            |

**Chem 4631** 

#### TABLE 14-1 Absorption Characteristics of Some Common Chromophores

© 2007 Thomson Higher Education

Theory for UV/vis<br/>SpectrometrySolvent Effects – See Lab Lecture 2Increasing polarity of the solvent:- Shifts  $n \rightarrow \pi^*$  transitions to shorter  $\lambda$ 's (blue shift).- Shifts  $\pi \rightarrow \pi^*$  Transitions to higher  $\lambda$ 's (red shift).

Blue shift – from increase solvation of the unbonded electron pair, lowering the energy of the n orbital.

**Example: water or alcohol as solvents increases hydrogen bond formation.** 

| IABLE 14-5 Effect of Multichromophores on Absor | rption |
|-------------------------------------------------|--------|
|-------------------------------------------------|--------|

| Compound                                                                         | Туре                               | $\lambda_{max}(nm)$ | ε <sub>max</sub> |
|----------------------------------------------------------------------------------|------------------------------------|---------------------|------------------|
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH=CH <sub>2</sub>               | Olefin                             | 184                 | ~10,000          |
| CH2=CHCH2CH2CH=CH2                                                               | Diolefin (unconjugated)            | 185                 | ~20,000          |
| H <sub>2</sub> C=CHCH=CH <sub>2</sub>                                            | Diolefin (conjugated)              | 217                 | 21,000           |
| H <sub>2</sub> C=CHCH=CHCH=CH <sub>2</sub>                                       | Triolefin (conjugated)             | 250                 |                  |
| O                                                                                |                                    |                     |                  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CCH <sub>3</sub> | Ketone                             | 282                 | 27               |
| O<br>II                                                                          |                                    |                     |                  |
| $CH_2 = CHCH_2CH_2CCH_3$                                                         | Unsaturated ketone                 | 278                 | 30               |
|                                                                                  | (unconjugated)                     |                     |                  |
| O<br>II                                                                          |                                    |                     |                  |
| СH <sub>2</sub> =СНССН <sub>3</sub>                                              | $\alpha,\beta$ -Unsaturated ketone | 324                 | 24               |
| 0.00                                                                             | (conjugated)                       |                     |                  |
|                                                                                  |                                    | 219                 | 3,600            |



**Absorbing Species** 

Three types of electronic transitions:

-π, σ, and n electrons
-d and f electrons
-charge transfer electrons

**Absorption involving d and f electrons** Many transitions-metal ions absorb in UV or vis region. The lanthanide and actinide series give narrow well-defines peaks and are not affected by environment (shielding of f electrons).



1 anna

**Figure 14-6** Typical absorption spectra for lanthanide ions.



Absorption involving d and f electrons The transition metal ion and complexes give broad bands and are influenced by environment.

Absorption involving d and f electrons See Lab Lecture 2

Two theories are proposed to explain the intense influence of environment on transition-metal ions.

- Crystal field theory
- Molecular orbital theory

**Absorbing Species** 

Three types of electronic transitions:
-π, σ, and n electrons
-d and f electrons
-charge transfer electrons

<u>Charge Transfer Absorption</u> See Lab Lecture 2 Molar absorptivities for charge transfer complexes are very large (ε<sub>max</sub> > 10,000)

**Examples are inorganic complexes such as some complexes of Fe (II) and Fe (III).** 

#### **Fluorescence Spectroscopy**



Figure 15-1 Partial energy diagram for a photoluminescent system.

#### **Transition type**

**Fluorescence seldom seen for**  $\lambda$ 's lower than 250 nm, because at these  $\lambda$ 's predissociation or dissociation occurs. Seldom see  $\sigma^* \rightarrow \sigma$  transitions for fluorescence Fluorescence due to  $\pi^* \rightarrow \pi$  and  $\pi^* \rightarrow n$ processes

#### Structure

Fluorescence more common in compounds having aromatic functional groups with low energy  $\pi \rightarrow \pi^*$ transition levels.

#### Structure Fluorescence higher with increasing number of rings.



Substitution on the rings also affect fluorescence:

Groups with non-bonding electrons enhance fluorescence -NH<sub>2</sub>, -OH, -F, -OCH<sub>3</sub>, -NHR and -NR<sub>2</sub>

Groups with electron withdrawing groups quench fluorescence

Chem 4631

-COOH, -NO<sub>2</sub>, -NH-CO-CH<sub>3</sub>, -Cl, -Br, -I

| <b>TABLE 15-1</b> | Effect of | Substitution of | n the Fluorescen | ce of Benzene <sup>a</sup> |
|-------------------|-----------|-----------------|------------------|----------------------------|
|-------------------|-----------|-----------------|------------------|----------------------------|

| Compound      | Formula                                        | Wavelength of<br>Fluorescence, nm | Relative Intensity<br>of Fluorescence |
|---------------|------------------------------------------------|-----------------------------------|---------------------------------------|
| Benzene       | $C_6H_6$                                       | 270–310                           | 10                                    |
| Toluene       | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub>  | 270–320                           | 17                                    |
| Propylbenzene | $C_6H_5C_3H_7$                                 | 270-320                           | 17                                    |
| Fluorobenzene | $C_6H_5F$                                      | 270-320                           | 10                                    |
| Chlorobenzene | C <sub>6</sub> H <sub>5</sub> Cl               | 275–345                           | 7                                     |
| Bromobenzene  | C <sub>6</sub> H <sub>5</sub> Br               | 290–380                           | 5                                     |
| Iodobenzene   | C <sub>6</sub> H <sub>5</sub> I                |                                   | 0                                     |
| Phenol        | C <sub>6</sub> H <sub>5</sub> OH               | 285-365                           | 18                                    |
| Phenolate ion | $C_6H_5O^-$                                    | 310-400                           | 10                                    |
| Anisole       | C <sub>6</sub> H <sub>5</sub> OCH <sub>3</sub> | 285–345                           | 20                                    |
| Aniline       | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub>  | 310-405                           | 20                                    |
| Anilinium ion | $C_6H_5NH_3^+$                                 | _                                 | 0                                     |
| Benzoic acid  | C <sub>6</sub> H <sub>5</sub> COOH             | 310–390                           | 3                                     |
| Benzonitrile  | C <sub>6</sub> H <sub>5</sub> CN               | 280-360                           | 20                                    |
| Nitrobenzene  | C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub>  |                                   | 0                                     |

**Chem 4631** 

<sup>a</sup>In ethanol solution.

#### Molecular Luminescence Spectrometry Effects on Fluorescence

- Very rigid structures are more likely to fluorescence.
- Complexing will increase fluorescence.



#### Molecular Luminescence Spectrometry Effects on Fluorescence

- Fluorescence decreases with increasing temperature more collisions.
  - Fluorescence decreases with solvents containing heavy atoms, (increases rate of triplet formation).
  - Fluorescence decreases with dissolved oxygen (has paramagnetic properties, promotes intersystem crossing to triplet state).

#### Molecular Luminescence Spectrometry Effects on Fluorescence

• Fluorescence increases with more resonance forms



#### Quantum yield – # of fluorescence photons / # of absorbed photons (or # of excited molecules)

**Quantitative Analysis using Fluorescence** 

 $\mathbf{F} = \mathbf{I}_{\mathbf{o}} \ \mathbf{\phi}_{\mathbf{F}} \ \mathbf{f}(\mathbf{\theta}) \ \mathbf{g}(\mathbf{\lambda}) \ (\mathbf{1} - \mathbf{e}^{-\varepsilon bc})$ 

$$\begin{split} \phi_F &- \text{ quantum efficiency} \\ f(\theta) &- \text{ geometric factor (usually 90°)} \\ g(\lambda) &- \text{ efficiency of detector as function of } \\ & \text{ wavelength} \end{split}$$

**Quantitative Analysis using Fluorescence** 

**Chem 4631** 

When  $e^{-\epsilon bc} < 0.5$  then

 $\mathbf{F} = 2.3 \mathbf{I_o} \ \phi_F \ \mathbf{f}(\theta) \ \mathbf{g}(\lambda) \ e^{-\epsilon bc}$ 

#### **Applications**

Fluorescence and phosphorescence methods more sensitive than absorbance methods since Intensity is measured independently of the source, P<sub>o</sub>.

However precision and accuracy are 2-5 times less than for absorbance methods.

**Applications Determination of Inorganic Species** Non-transition metal ions form fluorescing chelates over transition metals because transition metals tend to be paramagnetic and deactivation is more likely by internal conversion.

#### Molecular Luminescence Spectrometry Fluorometric Reagents

TABLE 15-2 Selected Fluorometric Methods for Inorganic Species

|   |                  |                                                                  | Wavel      | ength, nm    | LOD   |                                                                                                   |  |
|---|------------------|------------------------------------------------------------------|------------|--------------|-------|---------------------------------------------------------------------------------------------------|--|
|   | Ion              | Reagent                                                          | Absorption | Fluorescence | μg/mL | Interferences                                                                                     |  |
|   | Al <sup>3+</sup> | Alizarin garnet R                                                | 470        | 500          | 0.007 | Be, Co, Cr, Cu, $F^-$ , NO <sub>3</sub> <sup>-</sup> , Ni, PO <sub>4</sub> <sup>3-</sup> , Th, Zr |  |
|   | F-               | Quenching of Al <sup>3+</sup><br>complex of alizarin<br>garnet R | 470        | 500          | 0.001 | Be, Co, Cr, Cu, Fe,<br>Ni, PO <sub>4</sub> <sup>3-</sup> , Th, Zr                                 |  |
|   | $B_4O_7^{2-}$    | Benzoin                                                          | 370        | 450          | 0.04  | Be, Sb                                                                                            |  |
|   | Cd <sup>2+</sup> | 2-(o-Hydroxyphenyl)-<br>benzoxazole                              | 365        | Blue         | 2     | NH <sub>3</sub>                                                                                   |  |
|   | Li <sup>+</sup>  | 8-Hydroxyquinoline                                               | 370        | 580          | 0.2   | Mg                                                                                                |  |
|   | Sn <sup>4+</sup> | Flavanol                                                         | 400        | 470          | 0.1   | $F^{-}, PO_4^{3-}, Zr$                                                                            |  |
| 1 | Zn <sup>2+</sup> | Benzoin                                                          | _          | Green        | 10    | B, Be, Sb, colored ions                                                                           |  |

© 2007 Thomson Higher Education



**Applications Determination of organic species** Used for enzymes, coenzymes, medical agents, plant products, steroids, vitamins, food products and more. Widely used technique for a vast range of organics.

**Applications Lifetime Measurements** To study luminescence decay rates need mode-lock lasers to produce pulses of radiation with widths of 70-100 ps for excitation and fast-rise time PMTs for detection.

#### Molecular Luminescence Spectrometry Applications Lifetime Measurements



**Figure 15-10** Fluorescence lifetime profiles: *A*, excitation pulse; *B*, measured decay curve; *C*, corrected decay curve.

Analysis of Gases Used for determining atmospheric pollutants, i.e. ozone, nitrogen oxides, sulfurs.

Example. Determination of nitrogen monoxide  $NO + O_3 \rightarrow NO_2^* + O_2$  $NO_2^* \rightarrow NO_2 + hv (\lambda = 600-2800 nm)$ 

Analysis of Gases Used for determining atmospheric pollutants, i.e. ozone, nitrogen oxides, sulfurs.

**Example. Determination of atmospheric sulfur compounds** 

 $4H_2 + 2SO_2 \leftrightarrow S_2^* + 4H_2O$  $S_2^* \rightarrow S_2 + hv (\lambda = 384 \text{ and } 394 \text{ nm})$ 

#### Assignment

- Read Chapter 6
- HW2: Ch. 6: 2-12, 14, 15, 18, 19 (extra credit) (Due 1-29)
- Go over Lab Lecture 2
- Read Chapter 15
- Read Chapter 16 & 17
- HW 3: Ch. 16: 7, 8, 11 and Ch. 17: 2, 4, 5 (Due 1-31)
- HW4: Ch. 15: 1, 2, 4, 5, 9, 13 (Due 2-2)