Chemistry 4631

Instrumental Analysis Lecture 19

Sign Convention for Electrode Potentials (IUPAC)

Electrode potential is for half-reactions written as reductions.

Determined by the actual sign obtained when coupled with SHE in a galvanic cell.

Sign Convention for Electrode Potentials (IUPAC)

Sign of the electrode potential, E⁰,

- is positive when the half-cell behaves spontaneously as the cathode.
- is negative when the half-cell behaves as an anode.
- is a measure of driving force for the half-reaction.

Chem 4631

Positive sign - Cathodic (red) reaction is spontaneous.

Electroanalytical Chemistry Relationship between Concentration and Potential $aA + bB + ne^{-} \rightarrow cC + dD$

 $K = (a_{C}^{c})(a_{D}^{d})/(a_{A}^{a})(a_{B}^{b})$

 $\Delta G = -n F E_{cell}$ n -- # of moles of electrons in half-reaction F -- 96,485C

Relationship between Concentration and Potential $aA + bB + ne^- \rightarrow cC + dD$

 $E_{cell} = E^o - RT/nF \ln [C]^c [D]^d/[A]^a [B]^b$

R -- 8.314 J/Kmol

T -- Kelvin

n -- # of moles of electrons in half-reaction

Chem 4631

F -- 96,485C

ln -- 2.303log

Electroanalytical Chemistry Relationship between Concentration and Potential $aA + bB + ne^{-} \rightarrow cC + dD$

 $E^{o} = RT/nF \ln K$

Notice $E_{cell} = E^{o}$ when the activities are at unity.

Using molar concentrations instead of activities is valid only in dilute solutions.

Standard Electrode Potential, E⁰
is referenced to Standard Hydrogen Electrode
-- refers to the reduction reaction (equation written as reduction)

 $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g) \qquad E^{0} = 0.000V$ -- independent of # of moles of reactant or product $Fe^{+3} + e^{-} \rightarrow Fe^{+2} \qquad E^{0} = +0.771V$ $5Fe^{+3} + 5e^{-} \rightarrow 5Fe^{+2} \qquad E^{0} = +0.771V$ -- positive value means reaction is spontaneous with
respect to hydrogen electrode.

Reaction	<i>E</i> ⁰ at 25°C, V
$\operatorname{Cl}_2(g) + 2e^- \rightleftharpoons 2\operatorname{Cl}^-$	+1.359
$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-$	+1.087
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-$	+1.065
$Ag^+ + e^- \rightleftharpoons Ag(s)$	+0.799
$Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$	+0.771
$I_3^- + 2e^- \rightleftharpoons 3I^-$	+0.536
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	+0.337
$\mathrm{Hg}_{2}\mathrm{Cl}_{2}(s) + 2\mathrm{e}^{-} \rightleftharpoons 2\mathrm{Hg}(l) + 2\mathrm{Cl}^{-}$	+0.268
$AgCl(s) + e^{-} \rightleftharpoons Ag(s) + Cl^{-}$	+0.222
$\operatorname{Ag}(\operatorname{S}_2\operatorname{O}_3)_2^{3-} + \operatorname{e}^- \rightleftharpoons \operatorname{Ag}(s) + 2\operatorname{S}_2\operatorname{O}_3^{2-}$	+0.010
$2\mathrm{H}^+ + 2\mathrm{e}^- \rightleftharpoons \mathrm{H}_2(g)$	0.000
$AgI(s) + e^{-} \rightleftharpoons Ag(s) + I^{-}$	-0.151
$PbSO_4(s) + 2e^- \rightleftharpoons Pb(s) + SO_4^{2-}$	-0.350
$Cd^{2+} + 2e^{-} \rightleftharpoons Cd(s)$	-0.403
$7n^{2+} + 2e^{-} \Rightarrow 7n(s)$	-0.763

Chem 4631

TABLE 22-1 Standard Electrode Potentials*

*See Appendix 3 for a more extensive list.

Standard Electrode Potential, E⁰ Limitations

- Use concentrations not activities (ionic strength not taken into account).
- Is temperature dependent, must specify.
- Other side reactions
- Formal potential, E⁰' ratio of reactants and products must be unity and other[]'s are exactly known.

Ohmic Potential or IR drop Cells resist the flow of charge.

Ohm's Law V = IR or E = IR

- I -- current in amper(A),
- **R** -- resistance in ohms(Ω)

 $E_{cell} = E_{cathode} - E_{anode} - IR$

Electroanalytical Chemistry Ohmic Potential or IR drop What leads to IR drop?

- Electrochemical cells have points of resistance throughout the cell, i.e. interfaces, wires, junctions, solution, etc...
 - A higher potential than the thermodynamic potential, must then be applied in order to generate a current in the cell.

Polarization

Many electrochemical methods are based on current-voltage curves.

Use:

- -Ideal polarized electrodes
- -Ideal nonpolarized electrodes

Can study an electrode by coupling it with an electrode that does not readily polarize (large area, rapid reaction, reversible).

Polarization

Figure 22-6 Current-voltage curves for an ideal (a) polarized and (b) nonpolarized electrode. Dashed lines show departure from ideal behavior by real electrodes.

Polarization

Figure 22-7 Current-voltage curve for a cell showing ideal nonpolarized behavior between *A* and *B* (solid line) and polarized behavior (dashed line).

Polarization Effects

- From Ohm's Law if *i* is plotted versus E_{app} the plot should yield a straight line with a Slope = -1/R.
- However, the plot for a cell deviates from a straight line at higher currents. This nonlinear behavior for a cell is called polarization. (Π)
- So a higher than expected potential must be applied to get a certain current.
- **Degree of polarization = overpotential**

 $\eta = \boldsymbol{E} - \boldsymbol{E}_{eq}$

(E- actual potential, E_{eq} – thermodynamic potential)

Chem 4631

Polarization Effects

Two types of polarization

- Concentration
- Kinetic

Polarization Effects

Concentration Polarization

- Electron transfer occurs at the interface of an electrode, leaving only a thin film of solution in contact with the electrode.
- Thickness of this solution is only a few nm's and contains a finite number of molecules.

- These molecules must be replaced during the reaction.
- If the transfer of these molecules is slow, then a concentration polarization occurs.
 - How are these molecules replaced?
 - Diffusion, Migration and Convection.

Polarization Effects

Mass Transfer

For faradaic current to continue the species must be continuously transferred from the bulk of the solution to the electrode surface. This occurs by:

- Convection mechanical motion of the solution.
- Migration movement of ions by electrostatic attraction.

Chem 4631

Diffusion – motion of species due to a concentration gradient.

Diffusion

- Molecules or ions move from a more concentrated region to more dilute region to eliminate any concentration gradient.
- Rate of diffusion is proportional to the concentration difference.

$$E_{cathode_applied} = E^{0}_{X^{+n}} - \frac{0.0592}{n} \log \frac{1}{[X^{+n}]_{0}}$$

- $[X^{+n}]_0$ -- conc at the electrode
 - As $E_{cathode}$ becomes more negative $[X^{+n}]_0 \downarrow$ and rate of diffusion 1 and current 1.

Migration

Movement of ions under an electric field.

Negative ions migrate toward positive electrode and positive ions migrate toward negative electrode.

Chem 4631

Rate of migration as electrode E¹.

Convection

Mechanical transport or movement of ions or molecules in solution.

Chem 4631

Forced convection; stirring

decrease thickness of diffusion layer and ↓
 concentration polarization.

Polarization Effects Kinetic Polarization Measure of the Rate of Electron Transfer

 Magnitude of current is limited by the rate of one or both of the electrode reactions.

- **Decreased by**
 - evolved gases
 - polymeric films on the electrode
- Increased by
 - catalyst

 $2H_2O + 2e^- \leftrightarrows H_2 + 2OH^-$

٠

 $2\text{HPO}_4^{2-} + 2e^- \leftrightarrows \text{H}_2 + 2\text{PO}_4^{3-}$

Electroanalytical Chemistry Types of Electroanalytical Methods

Chem 4631

Figure 22-9 Summary of common electroanalytical methods. Quantity measured given in parentheses. (I = current, E = potential, R = resistance, G = conductance, Q = quantity of charge, t = time, vol = volume of a standard solution, wt = weight of an electrodeposited species.)

Assignment

- Read Chapter 22
- HW11 Chapter 22: 1, 5, 7, 9, and 11
- HW11 Due 3/22/24