Chemistry 4631 Instrumental Analysis Lecture 17

There are three major techniques used for elemental analysis:

- Optical spectrometry
- Mass spectrometry
- X-ray spectrometry

ICP

Advantages

- Lower susceptibility to chemical interferences (higher temperatures)
- Good emission spectra for most elements with same experimental setup (can record all at the same time)
- Can determine low concentrations of refractory compounds (i.e. oxides)

- Can determine non-metals (ie. Cl, Br, I, S)
- Larger linear range

ICP

Disadvantages

- Spectra are highly complex (increases probability of interferences for quantitative work)

- Need more expensive optical equipment (more difficult to maintain)

What is a Plasma?

- electrically conducting gaseous mixture
- contains high concentration of cations and electrons (net charge zero)

Chem 4631

- very high temperatures (10,000 K)

Types of Plasma

- Inductively coupled plasma (ICP)
- Direct current plasma (DCP)
- Microwave induced plasma (MIP)

Chem 4631

Inductively coupled plasma (ICP) ICP source is called a torch.

Consist of

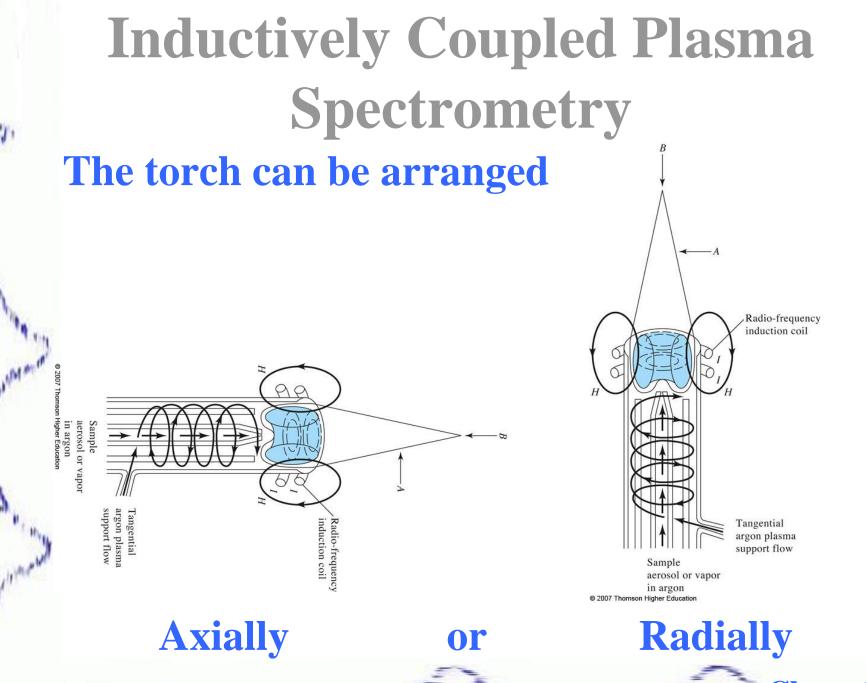
- three concentric quartz tubes
- water cooled induction coil

ICP torch

Radio-frequency induction coil

Tangential

Sample


© 2007 Thomson Higher Education

aerosol or vapor in argon argon plasma support flow Ar gas flows thru the quartz tubes at a rate of 5 - 20 mL/min.

Ionization of Ar is initiated with a Tesla coil.

The ions interact with a fluctuating magnetic field produced by an induction coil.

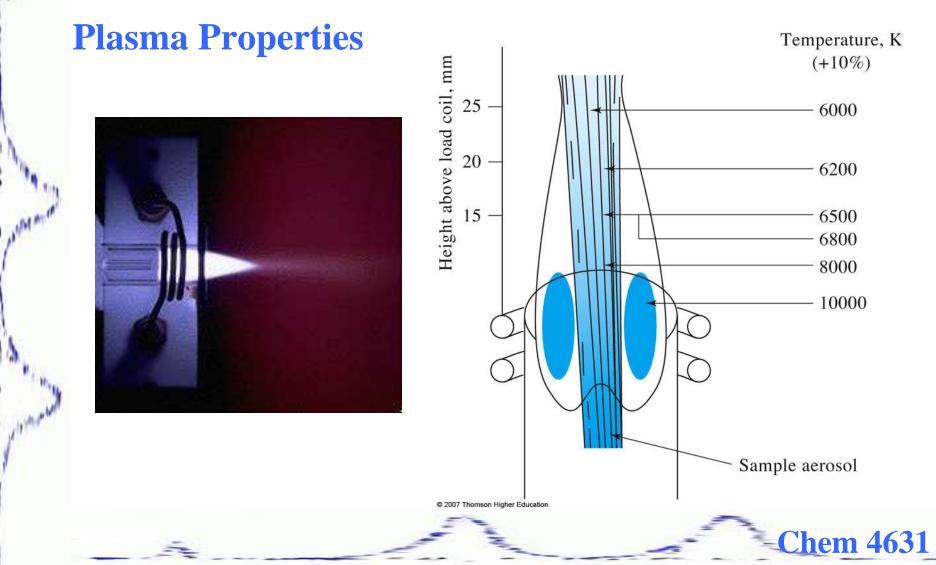
Induction coil powered by rf generator at 0.5 to 2 kW and 27.12 or 40.68 MHz. Chem 4631

Chem 4631

Axial Arrangement

Advantages

- Increased radiation intensity
- Longer path length
- Higher precision
- Lower detection limits
- Better for ICPMS


Disadvantages

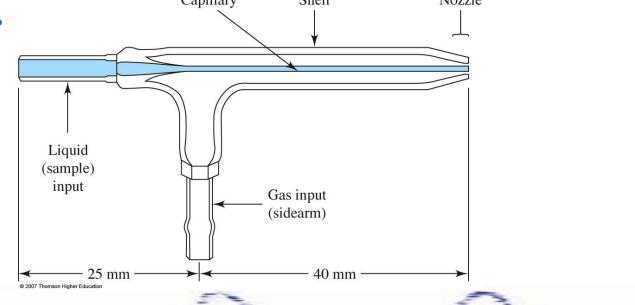
- > Plasma tail in the light path
- > Thermal and contaminant degradation of spectrometer optics

Plasma Properties

- Very intense
- Brilliant white
- Nontransparent core (few mm above the tube)
- Flamelike tail (on top of core) (6000-6500 K)

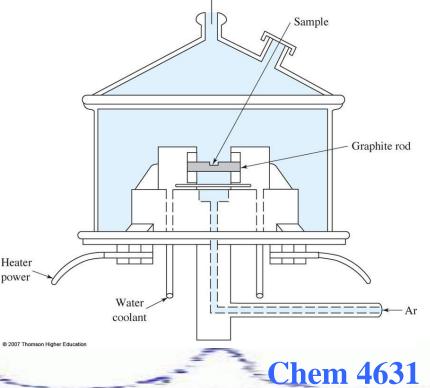
Core produces the atomic spectrum of Ar superimposed on a continuum. Above the core (15-30 mm), continuum fades and plasma is optically transparent.

Inductively Coupled Plasma Spectrometry Sample Introduction

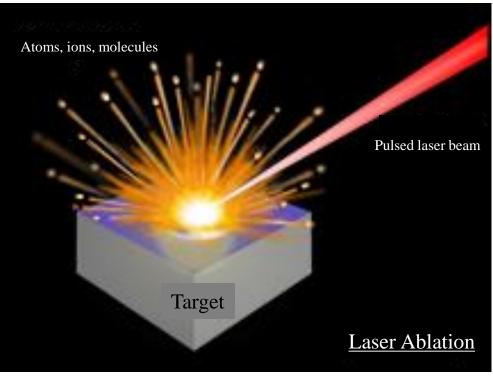

Samples can be aerosols, vapor, or solid.

Inductively Coupled Plasma Spectrometry Sample Introduction

For liquids can aspirate the sample into the plasma – similar to AA.


Use nebulization to break the liquid into fine Capillary Shell Nozzle

droplets.


Inductively Coupled Plasma Spectrometry Sample Introduction

For liquids and solids can use electrothermal vaporization similar to AA. For sample introduction only not for sample atomization.

Sample Introduction

For solid samples can use laser ablation.

Atomization of Sample Samples reside in the plasma for ~2 ms before being measured. Temperatures range from 5500 to 8000 K.

Advantages

More complete atomization in plasma. **Fewer chemical interferences.** Less oxide formation. **Plasma temperature is more uniform.** Larger linear range for calibration curves. **Plasma produces significant ionization – a** plus for ICPMS.

Spectrometers

Several companies offer ICP instruments. Wavelength range ~ 170-800 nm.

Chem 4631

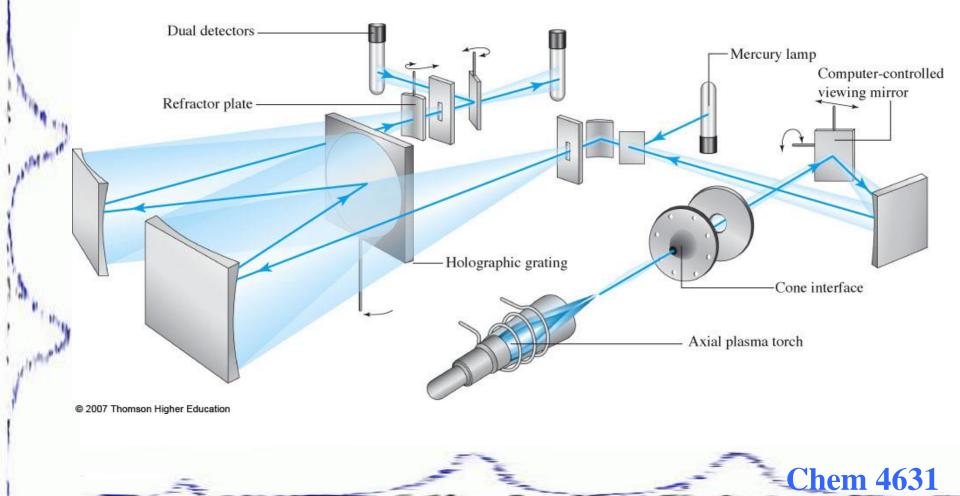
Types

Sequential
Simultaneous multichannel
Fourier transform

TABLE 10-1 Desirable Propertiesof an Emission Spectrometer

- 1. High resolution (0.01 nm or $\lambda/\Delta\lambda > 100,000$)
- 2. Rapid signal acquisition and recovery
- 3. Low stray light
- 4. Wide dynamic range $(>10^6)$
- 5. Accurate and precise wavelength identification and selection
- 6. Precise intensity readings (<1% relative standard deviation at $500 \times$ the detection limit)
- 7. High stability with respect to environmental changes

Chem 4631


- 8. Easy background corrections
- 9. Computerized operation: readout, storage data manipulation, etc.

© 2007 Thomson Higher Educatio

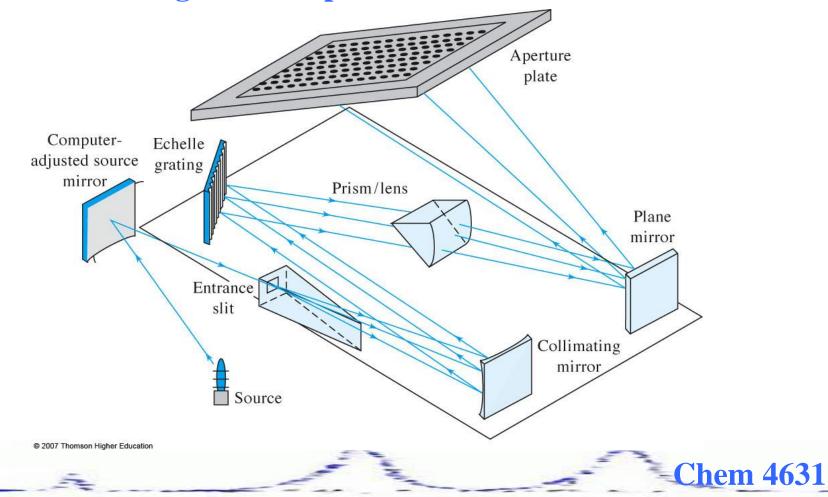
Sequential Instruments

- **Grating monochromator**
- holographic type (2400 3600 grooves/mm)
- can rotate the grating or fix the grating and move the slit and PMT
- can use 2 PMT's to scan UV and vis separately and Hg lamp to calibrate wavelength.

Sequential Instrument

Sequential Instruments

Slew-scan spectrometers


Instrument scans quickly to region of interest and then slows down to 0.01 – 0.001 nm steps.

Advantage – can measure ~ 15 elements in 5 minutes.

Disadvantage – consume more sample than other instrument designs.

Sequential Instruments Scanning Echelle Spectrometers Move the PMT in x and y direction to scan an aperture plate with 300 slits. Movement to each slit takes 1 sec.

Sequential Instruments Scanning Echelle Spectrometers

Chem 4631

Multichannel Spectrometers

Types

- Polychromators (use a series of PMTs)
- Spectrographs (use CIDs or CCDs)

Multichannel Spectrometers

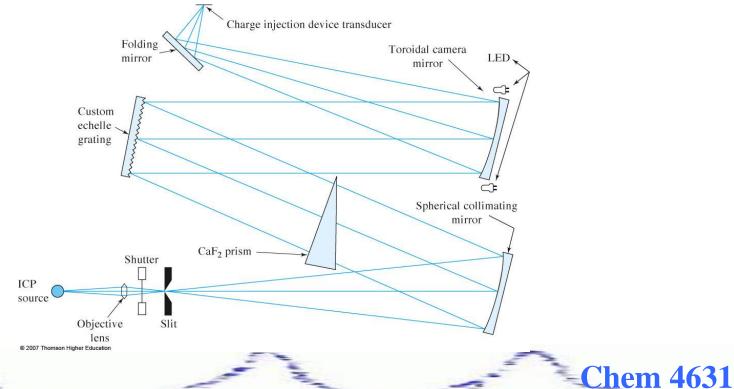
Polychromators

Use a Paschen-Runge design

The entrance slit, exit slit, and grating surface are located on the circumference of a Rowland circle. Radiation from each fixed slit hits the PMTs. The slits can be moved by a stepper motor to scan through peaks.

Multichannel Spectrometers

Polychromators Rowland circle tubes PMT Mirror power supply Concave diffraction **Advantages** grating -high precision Stepper motor Prealigned **Disadvantages** exit slits Movable Integration entrance electronics slit Mirror -cost Window Mercury Lens calibration ADO lamp Aperture Computer Two-position mirror ICP Lens FIGURE 10-8 Direct-reading ICP emission spectrometer. The polychromator is of the Paschen-


Runge design. It features a concave grating and produces a spectrum around a Rowland circle. Separate exit slits isolate each spectral line, and a separate photomultiplier tube converts the optical information from each channel into an electrical signal. Notice the radial viewing geometry. PMT = photomultiplier tube. (From J. D. Ingle Jr. and S. R. Crouch, Spectrochemical Analysis, p. 241, Upper Saddle River, NJ: Prentice-Hall, 1988, with permission.)

Photomultiplier

Multichannel Spectrometers

Spectrographs

Charge-Injection Devices – based on echelle spectrometers and 2D array devices

Multichannel Spectrometers

Spectrographs

Charge-Coupled Devices – 2 CCD's – one for vis and one for UV.

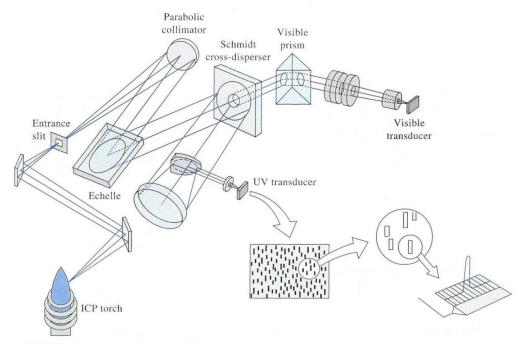


FIGURE 10-11 An echelle spectrometer with segmented array of CCDs. (From T. W. Barnard et al., *Anal. Chem.*, **1993**, 65, 1231. Figure 1, p. 1232. Copyright 1993 American Chemical Society.)

Schmidt cross-dispenser

1) Split the light into separate UV and vis channels

2) Serve as a grating that separates light by order

Chem 4631

3) Optically correct for spherical aberrations

Fourier Transform Spectrometers

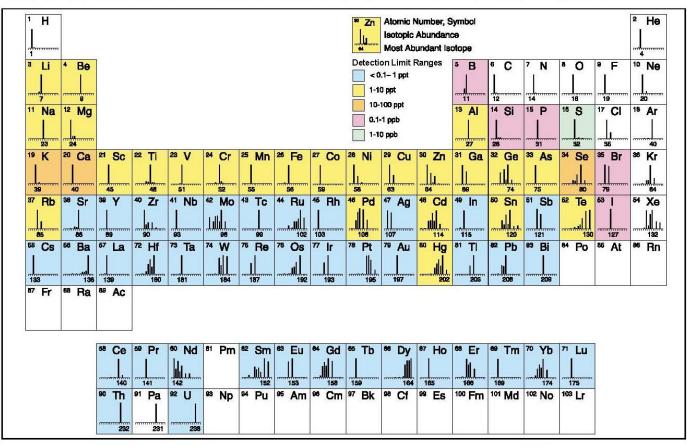
Advantages

- Wide wavelength coverage (170 1000 nm)
- Speed
- High resolution
- Accurate measurements
- Large dynamic range
- Compact size
- Large optical output

Disadvantages

Very high cost (mostly research instrument)

ICP Measurements


All metallic elements can be determined. B, P, N, S, and C using a vacuum spectrometer at wavelengths below 180 nm. Alkali metals are difficult since the prominent lines for Li, K, Rb, Cs are located in the near IR range.

ICP Measurements

WM M

^a The detection limits are based on a 98% confidence level (3 standard deviations).

^b Identifying a single part per trillion of an element in a solution is analogous to locating a single white raisin in a house (2,700 sq. ft) full of regular raisins.

Chem 4631

Figure 1. Elements determined by ICP-MS and approximate detection capability.

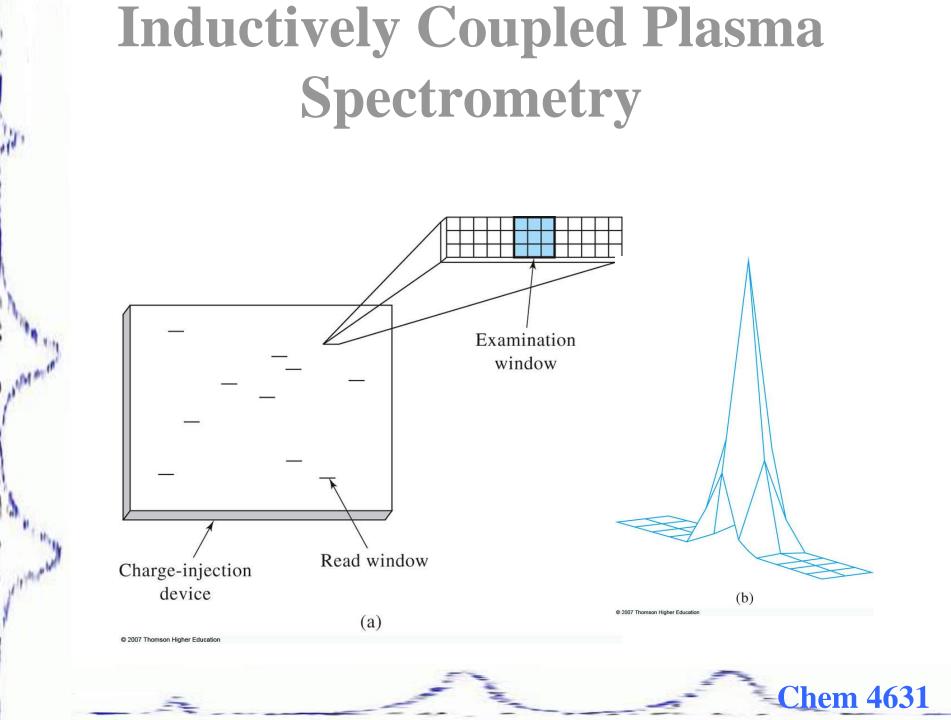
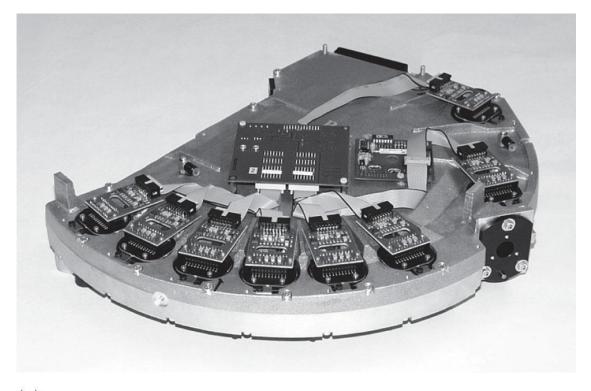

ICP Measurements Detection Limits

TABLE 10-3 Comparison of Detection Limits for Several Atomic Spectral Methods


Method	Number of Elements Detected at Concentrations of				
	<1 ppb	1–10 ppb	11–100 ppb	101–500 ppb	>500 ppb
ICP emission	9	32	14	6	0
Flame atomic emission	4	12	19	6	19
Flame atomic fluorescence	4	14	16	4	6
Flame atomic absorption	1	14	25	3	14

Assignment

- Read Chapter 8
- Read Chapter 9
- HW8 Chapter 8: 1, 4-9
- HW9 Chapter 9: 1-5, 7-9, 19
- HW8 Due 3/04/24
- HW9 Due 3/06/24
- Read Chapter 10
- HW10 Chapter 10: 1, 2, 6-11
- HW10 Due 3/08/24

Inductively Coupled Plasma Spectrometry Atomization

Chem 4631

(a) © 2007 Thomson Higher Education