Chemistry 4631

Instrumental Analysis Lecture 13

Environmental effects

Types of environmental effects

– Chemical shift

Differences in the absorption frequency for a proton depend on the group to which the hydrogen atom is bonded. (Ex. Ethanol – three sets of peaks)

Chemical shifts can be split by:

- Spin-spin splitting

Magnetic moment of nucleus interacts with the magnetic moment of adjacent nuclei. Gives fine structure. (Ex. Ethanol – methylene and methyl peaks split)

(a) Low resolution

Chem 4631

UM.

Environmental effects

Chemical shift and Spin-spin splitting can be distinguished from each other since peak separations resulting from chemical shift are directly proportional to field strength or oscillator frequency, while fine-structure peaks within a group, caused by spin-spin coupling are not altered by a frequency change.

Chemical Shift parameter, δ

Figure 19-13 Abscissa scales for NMR spectra.

Notice δ is independent of instrumental field

NMR plots

- Cannot determine the absolute magnetic field strength with accuracy but can determine the magnitude of a change in field strength.
- To do this need internal standards.
- Most common standards
- Tetramethysilane (TMS), (CH₃)₄Si
- 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS) (CH₃)₃SiCH₂CH₂CH₂CH₂SO₃Na Used for aqueous solutions

NMR plots Tetramethysilane (TMS), (CH₃)₄Si All protons are identical giving a single sharp peak in the spectrum and usually isolated from other peaks of interest. Inert, soluble in most organic liquids, and can be removed by distillation.

Chemical Shift parameter, δ $\delta = (\sigma_{ref} - \sigma_{sample}) \ge 10^6 \text{ ppm}$ $(\sigma - screening constant)$ Most proton peaks are in the δ range of 1 -13. **Chemical shifts for 13C are in the range of** 0 - 220 ppm.

(Screening constant is determined by the electron density and spatial distribution around the nucleus)

NMR

Chem 4631

Theory of Chemical Shift Chemical shift is used to identify functional groups by correlating structure and shift.

Theory of Chemical Shift

Under influence of magnetic field, electrons bonding the proton tend to precess around the nucleus in a plane perpendicular to the magnetic field.

This motion develops a secondary field, which opposes the primary field.

Thus the external field must be increased to cause nuclear resonance.

The shielding effect is directly related to electron density around nucleus.

- **Theory of Chemical Shift**
 - Example $CH_3X \delta$ values depend on shielding effect of halogen.
 - I most amount of shielding (least electronegative, does not withdraw electrons from methyl protons as well).

- F least amount of shielding, most electronegative.
- $\delta = I \qquad (2.16) \\ Br \qquad (2.68) \\ Cl \qquad (3.05) \\ F \qquad (4.26)$

Theory of Chemical Shift

Chemical shift is used to identify functional groups and help determine structure. Interpretation of NMR spectra becomes important for chemist. Many charts and tables have been published to aid in interpretation.

δ and τ value and range[†]

[†]Normally, absorptions for the functional groups indicated will be found within the range shown. Occasionally, a functional group will absorb outside this range. Approximate limits for this are indicated by absorption values in parentheses and by shading in the figure.

Chem 4631

[†]The absorption positions of these groups are concentration-dependent and are shifted to higher τ values in more dilute solutions.

12

Figure 19-17 Absorption positions of protons in various structural environments. *(Table taken from J. R. Dyer, Applications of Absorption Spectroscopy by Organic Compounds, p. 85. Englewood Cliffs, NJ: Prentice-Hall, 1965. With permission.)*

	δ, ррш							
Structure	$\mathbf{M} = \mathbf{C}\mathbf{H}_3$	$\mathbf{M} = \mathbf{CH}_2$	$\mathbf{M} = \mathbf{C}\mathbf{H}$					
Aliphatic α substituents								
M—Cl	3.0	3.5	4.0					
M—Br	2.7	3.4	4.1					
M-NO ₂	4.3	4.4	4.6					
M—OH (or OR)	3.2	3.4	3.6					
M-O-C ₆ H ₅	3.8	4.0	4.6					
M - OC = OR	3.6	4.1	5.0					
M-C=C	1.6	1.9	<u> </u>					
M-C=C	1.7	2.2	2.8					
M-C(=O)H	2.2	2.4	_					
M-C(=O)R	2.1	2.4	2.6					
$M-C(=O)C_6H_5$	2.4	2.7	3.4					
M-C(=O)OR	2.2	2.2	2.5					
M-C ₆ H ₅	2.2	2.6	2.8					
Aliphatic β substituents								
M-C-Cl	1.5	1.8	2.0					
M-C-Br	1.8	1.8	1.9					
M-C-NO ₂	1.6	2.1	2.5					
M—C—OH (or OR)	1.2	1.5	1.8					
M-C-OC(=O)R	1.3	1.6	1.8					
M-C-C(=O)H	1.1	1.7	·					
M-C-C(=O)R	1.1	1.6	2.0					
M-C-C(=O)OR	1.1	1.7	1.9					
$M-C-C_6H_5$	1.1	1.6	1.8					

-Chem 4631

 TABLE 19-2
 Approximate Chemical Shifts for Certain Methyl, Methylene, and Methine Protons

© 2007 Thomson Higher Education

Theory of Chemical Shift Spin-spin splitting

The spacing of the spin-spin splitting peaks is called the coupling constant, J, and is given in hertz. The areas of the lines for each multiplet are an integer ratio of each other.

Theory of Chemical Shift Spin-spin splitting

Example: methylene protons in ethanol there are four possible spin orientations which affect the methyl protons to split into a triplet with the center peak twice the area of the other two.

Field direction

Thomson Higher Education

 $B_0 \rightarrow$

Possible spin orientations of methylene protons

Theory of Chemical Shift Spin-spin splitting

Example: methyl protons in ethanol there are eight possible spin orientations which affect the methylene protons to split into a quartet with the ratio of 1:3:3:1.

Theory of Chemical Shift Spin-spin splitting

There are general rules that the number of peaks in a split band is equal to the number n of magnetically equivalent protons on adjacent atoms plus one. The number of such peaks is called <u>multiplicity</u>.

- Theory of Chemical Shift Spin-spin splitting
 - **Rules for interpretation**
 - Coupling constants decrease with group separation and coupling is rarely observed at distances greater than four bond lengths.
 - Coupling constants are independent of the applied field, can distinguish multiplets from chemical shifts by obtaining spectra at two different field strengths.

- Theory of Chemical Shift Spin-spin splitting
 - **Rules for interpretation**
 - Equivalent nuclei do not interact with one another i.e. 3 protons on a methyl group do not split themselves.
 - Multiplicity of bands is determined by the number, n, of magnetically equivalent protons on the neighboring atoms and given by n + 1.
 - Splitting is symmetrical around the midpoint of a band.

- Theory of Chemical Shift Spin-spin splitting
 - **Rules for interpretation**
 - If protons on atom B are affected by protons on atoms A and C that are nonequivalent, the multiplicity of B is $(n_A + 1)(n_C + 1)$.
 - The relative areas of a multiplet are symmetrical around the midpoint. See table 19-3.

Theory of Chemical Shift Spin-spin splitting

Number of Equivalent Protons, <i>n</i>	Multiplicity, (n + 1)							Relativ	ve Peak	(Areas	i i					
0	1								1							
1	2							1		1						
2	3						1		2		1					
3	4					1		3		3		1				
4	5				1		4		6		4		1			
5	6			1		5		10		10		5		1		
6	7		1		6		15		20		15		6		1	
7	8	1		7		21		35		35		21		7		1

Chem 4631

TABLE 19-3 Relative Intensities of First-Order Multiplets (I = 1/2)

© 2007 Thomson Higher Education

Chem 4631

Theory of Chemical Shift Spin-spin splitting Examples: Cl CH₂ CH₂ Cl CH₂ **n+1 n+1 n+1** 2+1=3 4+1=5 2+1=3 1:2:1 1:4:6:4:1 1:2:1 CH₃ CH Br CH₃ 1+1=2 6+1=7 1+1=21:1 1:6:15:20:15:6:1 1:1

Theory of Chemical ShiftSpin-spin splittingExamples:CH3CH2OCH3n+1n+1n+11n+11:2:11:3:3:11 peak

Chem 4631

NMR Spectrometers

- **Two types:**
 - Wide-line spectrometers
 - High-resolution spectrometers

Wide-line

- Magnet strengths ~ 0.1 1.0 tesla
- Simple
- Less expensive ~under 100,000

High resolution

- Magnet strengths 1.4 23 T
- Proton frequencies 60-1000 MHz
- More expensive ~ $\frac{1}{2}$ to 1 million

NMR Spectrometers

IM

NMR Spectrometers Radio-frequency radiation is produced by a crystal controlled frequency synthesizer having output frequency of v_c. Signal passes into a pulse switch and power amplifier to create an intense and reproducible pulse of radio-frequency current in the transmitter coil. **Resulting rf radiation impinges on the** sample inside the coil.

NMR Spectrometers The length, amplitude, shape, and phase of the pulse are selected by the operator. The resulting signal is picked up by the same coil acting now as a receiver. The signal is amplified and transmitted to a phase sensitive detector which transforms the time-domain signal to frequency-domain signal (NMR spectra).

NMR Spectrometers Components of FTNMRs Magnets Sensitivity and resolution of spectrometer is dependent on strength and quality of magnet. Goal is to increase field strength and produce highly homogeneous, reproducible field. Magnet most expensive component of instrument.

NMR Spectrometers Components of FTNMRs Magnets Three types: Permanent magnet Conventional electromagnet (not used much anymore) **Superconductivity solenoids**

NMR Spectrometers Magnets Permanent magnets – used in CW Field strength 0.7, 1.4 and 2.1 T for 30, 60, and 90 MHz. **Temperature sensitivity – require** extensive thermostating and shielding. **Field drift problems – not ideal for** extended periods.

NMR Spectrometers

Magnets

Superconductivity magnets

Field strengths up to 23 T for 1 GHz

The solenoid is bathed in liquid He at 4K, superconducting niobium/tin or niobium/titanium wire is wound around the solenoid.

He dewer is bathed with liquid N₂.

Filled w/ liquid N₂ once a week and liquid He every few months.

- High field strength
- High stability
- Low operating cost
- Simple
- Small size

NMR Spectrometers

Magnets

Superconductivity magnets

Field strengths up to 23 T for 1 GHz

Typically made of Nb-Ti

Critical temperature of 10 kelvins and can superconduct at up to about 15 teslas.

More expensive magnets can be made of niobium-tin (Nb3Sn). These have a Tc of 18 K. When operating at 4.2 K they are able to withstand a much higher magnetic field intensity, up to 25 to 30 teslas.

NMR Spectrometers

Magnets

Superconductivity magnets

Magnet quenching

A quench is an abnormal termination of magnet operation that occurs when part of the superconducting coil enters the normal (resistive) state.

Due to:

-field inside the magnet is too large,

-rate of change of field is too large (causing eddy currents and resultant heating in the copper support matrix),

Chem 4631

-combination of the two

-a defect in the magnet

NMR Spectrometers Magnets Magnets still not stable or homogeneous in of themselves and need methods to compensate for drift and field inhomogeneity.

NMR Spectrometers Magnets Locking magnetic field **Offsets field fluctuations by using a reference** nucleus. The reference is continuously irradiated and monitored at a frequency corresponding to its resonance maximum. Most modern instruments are stable for 1-20 minutes.

NMR Spectrometers Magnets Shimming Shim coils – pair of wire loops with a set current flowing through them to produce small magnetic fields. **Used to compensate for inhomogeneties** in primary magnet field.

NMR Spectrometers Magnets <u>Sample spinning</u> Spin sample to compensate for field inhomogeneity.

Analytical Applications Nmr is nondestructive **Possible to carry out analysis in one step** Not great sensitivity but tends to a positive result Fast **Integrated intensities give only relative abundance of** nuclei With internal standards it is possible to determine the total weight of hydrogen in a known weight of a pure compound.

Applications

Define environment of functional groups
Quantitative determination of compounds in mixtures and can following progress of reactions
Can yield kinetic and thermodynamic parameters for certain types of chemical reactions
Give accurate information about the relative position of groups of magnetic nuclei within the molecule.

Assignment

- Read Chapter 19
- HW7 Chapter 19: 2, 3, 4, and 31- 37
- HW7 Due 2/26/24
- <u>http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/</u> <u>nmr1.htm</u>
- <u>http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/</u> <u>nmr2.htm</u>
- <u>http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/</u> <u>nmr3.htm</u>
- <u>http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/</u> <u>nmr4.htm</u>