Chemistry 4631

Instrumental Analysis Lab Lecture 2 More UV Theory

Molar Absorptivities Range 0 to 10⁵

> Magnitude of ε depends on capture cross section of the species and probability of the energy-absorbing transition.

> > **Chem 4631**

 $\varepsilon = 8.7 \times 10^{19} P A$

P – transition probability

A – cross-section target area, cm²

Molar Absorptivities $\varepsilon = 8.7 \times 10^{19} P A$ P - transition probabilityA - cross-section target area, cm²

Typical area for organic molecules are ~ 10^{-15} cm² P – range from 0 to 1 quantum allowed 0.1 to 1 ($\varepsilon_{max} = 10^4$ to 10^5) Less than 10^3 – gives low intensity

Absorbing Species

Absorption of UV/vis radiation is a two step process:

M + hv → M* (electronic excitation) M* lifetime ~ 10^{-8} to 10^{-9} sec M* → M + heat (relaxation)

Absorbing Species

Relaxation occurs by:

- Conversion to heat
- Decomposition of M* (photochemical rxn)
- Reemission of fluorescence or phosphorescence

Absorbing Species

Absorption occurs by excitation of bonding electrons

i.e. λ correlates to type of bond in species Valuable in identifying functional groups

Absorbing Species

Three types of electronic transitions:

-π, σ, and n electrons
-d and f electrons
-charge transfer electrons

Absorbing Species that contain π , σ , and n electrons are:

- Organic molecules
- Organic ions
- Many inorganic anions

Absorption of UV above the vacuum UV region is limited to functional groups (chromophores) that contain valence electrons at low excitation energies.

Types of Absorbing Electrons Electrons of organic molecules contributing to absorption are: - Those in bond formation between atoms Nonbonding or unshared outer electrons that are localized (i.e. oxygen, halogens, sulfur, nitrogen)

Two atomic orbitals combine to produce: – Low energy bonding molecular orbital – High energy antibonding molecular orbital

Single bonds – sigma (σ) orbitals Double bonds – sigma (σ) and pi (π) orbitals Nonbonding electrons - n

Figure 14-1 Electron distribution in sigma and pi molecular orbitals.

Chem 4631

Figure 14-2 Types of molecular orbitals in formaldehyde.

$\sigma \rightarrow \sigma^*$ Transitions

Energy to promote a transition is large needing far UV. Examples: C-H bonds in methane seen at 125 nm. C-C bonds in ethane at 135 nm.

$n \rightarrow \sigma^*$ Transitions

Occur in compounds containing atoms with unshared electrons. Absorption region 150 to 250 nm

TABLE 14-1Some Examples of Absorption due
to $n \rightarrow \sigma^*$ Transitions^a

Compound	$\lambda_{max}(\mathbf{nm})$	€ _{max}	
H ₂ O	167	1480	
CH ₃ OH	184	150	
CH ₃ Cl	173	200	
CH ₃ I	258	365	
$(CH_3)_2S^b$	229	140	
(CH ₃) ₂ O	184	2520	
CH ₃ NH ₂	215	600	
(CH ₃) ₃ N	227	900	

^{*a*}Samples in vapor state. ^{*b*}In ethanol solvent.

-Chem 4631

<u> $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ Transitions</u> Absorption region 200 – 700 nm Transition requires presence of unsaturated functional groups to provide π orbitals.

Chromophore	Example	Solvent	λ_{\max} , nm	$\boldsymbol{arepsilon_{\max}}$	Transition Type
Alkene	C ₆ H ₁₃ CH=CH ₂	<i>n</i> -Heptane	177	13,000	$\pi \mathop{\rightarrow} \pi^*$
Alkyne	$C_5H_{11}C \equiv C - CH_3$	n-Heptane	178	10,000	$\pi \! \rightarrow \! \pi^*$
10.02			196	2000	—
			225	160	—
Carbonyl	CH ₃ CCH ₃	n-Hexane	186	1000	$n \rightarrow \sigma^*$
	0		280	16	$n \rightarrow \pi^*$
	CH ₃ CH	<i>n</i> -Hexane	180	large	$n \rightarrow \sigma^*$
	O		293	12	$n \mathop{\rightarrow} \pi^*$
Carboxyl	CH ₃ COOH	Ethanol	204	41	$n \! ightarrow \! \pi^*$
Amido	CH ₃ CNH ₂	Water	214	60	$n \rightarrow \pi^*$
Azo	CH ₃ N=NCH ₃	Ethanol	339	5	$n \! ightarrow \! \pi^*$
Nitro	CH ₃ NO ₂	Isooctane	280	22	$n \! ightarrow \! \pi^*$
Nitroso	C ₄ H ₉ NO	Ethyl ether	300	100	—
			665	20	$n \! ightarrow \! \pi^*$
Nitrate	C ₂ H ₅ ONO ₂	Dioxane	270	12	$n \rightarrow \pi^*$

Chem 4631

TABLE 14-1 Absorption Characteristics of Some Common Chromophores

© 2007 Thomson Higher Education

Solvent Effects

Increasing polarity of the solvent:

- Shifts n $\rightarrow \pi^*$ transitions to shorter λ 's (blue shift).
- Shifts $\pi \rightarrow \pi^*$ Transitions to higher λ 's (red shift).

Blue shift – from increase solvation of the unbonded electron pair, lowering the energy of the n orbital.

Example: water or alcohol as solvents increases hydrogen bond formation.

IABLE 14-5 Effect of Multichromophores on Absorp	ption
---	-------

Compound	Туре	$\lambda_{max}(nm)$	ε _{max}
CH ₃ CH ₂ CH ₂ CH=CH ₂	Olefin	184	~10,000
CH2=CHCH2CH2CH=CH2	Diolefin (unconjugated)	185	~20,000
H ₂ C=CHCH=CH ₂	Diolefin (conjugated)	217	21,000
H ₂ C=CHCH=CHCH=CH ₂	Triolefin (conjugated)	250	
O			
CH ₃ CH ₂ CH ₂ CH ₂ CCH ₃	Ketone	282	27
O II			
$CH_2 = CHCH_2CH_2CCH_3$	Unsaturated ketone	278	30
	(unconjugated)		
O II			
СH ₂ =СНССН ₃	α,β -Unsaturated ketone	324	24
0.00	(conjugated)		
		219	3,600

Absorbing Species

Three types of electronic transitions:

-π, σ, and n electrons
-d and f electrons
-charge transfer electrons

Absorption involving d and f electrons Many transitions-metal ions absorb in UV or vis region. The lanthanide and actinide series give narrow well-defines peaks and are not affected by environment (shielding of f electrons).

1 anna

Figure 14-6 Typical absorption spectra for lanthanide ions.

Absorption involving d and f electrons The transition metal ion and complexes give broad bands and are influenced by environment.

Absorption involving d and f electrons Two theories are proposed to explain the intense influence of environment on transition-metal ions.

- Crystal field theory
- Molecular orbital theory

Absorption involving d and f electrons Complex formation between the metal ion and a ligand causes splitting of the dorbital energies.

The approach of the ligand along an axis containing a d-orbital will have a repulsive effect and increase the energy of the d-orbital.

Crystal field theory (Ligand field theory)
The five d orbitals are degenerate (equal energy) in gaseous metal ions.
However in an electrostatic field caused by the presence of ligands this is no longer true.

Crystal field theory Example : Octahedral complex with d_z² and d_x²-y² directed towards the ligands. Ligand cause repulsion in these two orbitals and raise the energy (e_g*) more than for the other three orbitals, d_{xy}, d_{xz}, d_{yz} (t_{2g}).

Figure 14-9 Effect of ligand field on *d*-orbital energies.

Crystal field theory

The stronger the field, the greater the splitting of the energy levels.

For all configurations other than d⁰, d⁵ (high spin) and d¹⁰, splitting lowers the total energy of the system.

This decrease in energy caused by the splitting of the energy levels is the ligand field stabilization energy (LFSE).

Crystal field theory

Crystal field theory Electrons enter the t_{2g} orbitals in accordance with Hund's rule.

Crystal field theory

Occupation of d orbitals in octahedral complexes for d^3 and d^4 configurations.

Crystal field theory

Figure 7.10 Splitting of the energy levels in an octahedral (tetragonal) field elongated along the *z* direction.

Crystal field theory

Figure 7.11 Energy levels for square planar nickel(II) complexes.

- Absorption involving d and f electrons The magnitude of the energy splitting depends on:
 - Charge on the metal ion (increases with increasing oxidation number)
 - Position of the parent element in the periodic table (increases down a group)

Chem 4631

– Ligand field strength

Ligand field strength

 $I^- < Br^- < CI^- < F^- < OH^- < C_2O_4^{-2-} ~ H_2O < SCN^- < NH_3 < ethylenediamine < o-phenanthroline < NO_2^- < CN^-$

Ligand field strength

 $I^- < Br^- < Cl^- < F^- < OH^- < C_2O_4^{-2-} ~ H_2O < SCN^-$ < NH_3 < ethylenediamine < o-phenanthroline < $NO_2^- < CN^-$

This is also known as the spectrochemical series, since the original order was determined from spectral shifts for complexes.

TABLE 14-5Effect of Ligands on Absorption
Maxima Associated with $d \rightarrow d$
Transitions

Central Ion	λ _{ma}	_x (nm) for	the Indic	ated Lig	ands	
	Increasing Ligand Field Strength \rightarrow					
	6C1-	6H ₂ O	6NH ₃	3en ^a	6CN-	
Cr(III)	736	573	462	456	380	
Co(III)		538	435	428	294	
Co(II)		1345	980	909	_	
Ni(II)	1370	1279	925	863	—	
Cu(II)	_	794	663	610	_	

^{*a*}en = ethylenediamine, a bidentate ligand = $NH_2CH_2CH_2NH_2$

Absorbing Species

Three types of electronic transitions:
-π, σ, and n electrons
-d and f electrons
-charge transfer electrons

Charge Transfer AbsorptionMolar absorptivities for charge transfer
complexes are very large ($\varepsilon_{max} > 10,000$)

Examples are inorganic complexes such as some complexes of Fe (II) and Fe (III).

Charge Transfer Absorption

For a complex to exhibit charge transfer absorption, one of its components is an electron-donor and another is an electron-acceptor.

Absorption then is a transfer of an electron from the donor to the acceptor.

Charge Transfer Absorption

Ex: For a Fe(III)/thiocyanate complex, when a photon is absorbed, an electron is transferred from the thiocyanate ion to the Fe(III) producing Fe(II).

Applications of UV/vis Spectrometry

Derivative Spectroscopy

Spectra are 1st or 2nd order derivative of absorbance or transmittance with respect to wavelength.

Advantages

- reveal detail that can be lost in an ordinary spectrum

- help identify overlapping peaks
- reveal weaker signals

Figure 14-16 Comparison of a derivative spectrum (a) with a standard transmittance spectrum (b).

Figure 14-17 Absorption spectra of bovine albumin: (a) ordinary spectrum, (b) first derivative spectrum, (c) second derivative spectrum. *(Reprinted with permission from J. E. Cahill and F. G. Padera, Amer. Lab., 1980, 12(4), 109. Copyright 1980 by International Scientific Communications, Inc.).*

Assignment

• Read Chapters 15, 16, and 17