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ABSTRACT: The introduction of bi- or multifunctionality into
different cages of metal−organic frameworks (MOFs) has been of
great interest because such MOF materials can demonstrate unique
properties for various applications. Herein, we report a general strategy
for creating different types of functionalized cages in MOFs by exerting
control of the size of cage windows. Selective cage decoration was
thereby enabled in such a manner that dual functional MOFs with
different types of cages and pores can be created. The resultant different
pore function MOF, DPF-MOF, is illustrated as a “proof of concept” in
MOF MIL-101-Cr. An intermediate of a cascade reaction was
successfully trapped and controlled the desired reaction direction. This DPF-MOF represents a new type of platform that, by
trapping intermediates during the reaction processes, enhances our fundamental understanding of reaction chemistry in porous
materials.

■ INTRODUCTION

Metal−organic frameworks (MOFs),1−3 an emerging class of
porous materials, have attracted great attention from both
academia and industry because of their potential applications in
areas as diverse as gas storage,4,5 separation,6−8 carbon
capture,9−12 sensing,13−15 and catalysis.16−18 Compared with
conventional porous materials such as zeolites and mesoporous
silica materials,19,20 MOFs feature greater structural diver-
sity,21−24 amenability to design,25−27 adjustable pore size and
porosity,28,29 much larger surface areas,30−32 a crystalline nature
for elucidation of structure−function relationships,16−18,33,34

and relatively facile immobilization of guest species.35−38 These
features allow MOFs to serve as a new type of platform that can
be designed such that they incorporate bi- or multifunctional
features into one system for various applications, e.g., cascade
catalysis.39−49 However, MOFs that exhibit two different types
of functional pores or cages remain understudied.50−52 A
biporous MOF with different pore function (DPF) (designated
herein as DPF-MOFs) is a difficult task if the synthetic
approach is exploiting preassembled molecular building blocks
(MBBs), despite the large library of organic ligands that can be
used to link MBBs. This is because even a small change in the
functionality in the linker often leads to the formation of a
completely different porous network. Herein, we report the
selective functionalization of two different cages based on
stepwise postsynthetic modification (PSM).53−58 This ap-
proach is facilitated by the inherent modularity and amenability

to PSM of MOFs permitted by porosity. Specifically, grafting
different functions into two distinct pore systems has been
permitted by window-size control to afford a family of DPF-
MOFs.
Our approach to creating DPF-MOFs is based upon

exploiting a MOF containing two distinct cages with different
window sizes (Scheme 1a) and is accomplished through pore
size-controlled stepwise PSM. In the first step, functionality is
introduced into both cages via nonselective PSM (Scheme 1b).
In the second step, size-controlled selective encapsulation of
molecules that can diffuse only into the larger cage creates a
cage with one type of function (Scheme 1c). In the third step,
the smaller cage is decorated with a different function (Scheme
1d). It is realistic to assert that PSM might be used in an
iterative manner to further modify either or both cages, but that
is not a focus of this study.

■ RESULTS AND DISCUSSION

Synthesis and Characterization. To establish a proof of
principle for our pore size-controlled stepwise strategy, we
s e l e c t ed MIL -101 -C r {C r 3 (F ) (H2O) 2O[(CO2) -
C6H4(CO2)]3}.

59 MIL-101-Cr exhibits mtn topology, and as
is the case for many MOFs based upon polyhedral cages, it is
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comprised of more than one type of cage: a 2.9 nm diameter
cage that exhibits pentagonal windows with an opening of ∼1.2
nm × 1.2 nm and a 3.3 nm diameter cage that possesses both
pentagonal windows and larger hexagonal windows with a free
aperture of ∼1.4 nm × 1.6 nm. The smaller cage and the larger
cage are interconnected through the pentagonal windows. The
possibility of size selective encapsulation into the larger cage,
the presence of unsaturated metal centers (UMCs),56,57 and
organic linkers60−63 with functional organic groups all
contribute to make MIL-101-Cr an ideal candidate for
validating whether it is feasible to create DPF-MOFs.
A DPF-MOF with both acidic and basic functionality was

prepared by the following process. Ethylenediamine (ED) was
first grafted onto the UMCs of MIL-101-Cr to form MIL-101-
ED with basic functionality in both cages using procedures
detailed in the literature.56 Elemental analysis revealed that
∼1.92 ED per formula unit is present in MIL-101-ED.
Phosphotungstic acid (H3PW12O40) (PW) with a 1.35 nm
van der Waals diameter was then selectively encapsulated into
the larger cages64 of MIL-101-ED (Scheme 2 and Scheme S1).

Inductively coupled plasma (ICP) studies indicated ∼0.053
Keggin acid anion per Cr(III), which corresponds to 5.6 PWs
per large cage (Scheme S1). The encapsulated PW anions are
expected to exhibit acid function because of the pseudoliquid
phase characteristics of polyacids within pores.65 A DPF-MOF,
MIL-101-ED-PW, was thereby afforded.

Powder X-ray diffraction (PXRD) studies revealed that MIL-
101-ED exhibits a PXRD pattern that closely matches that of
as-prepared MIL-101-Cr whereas MIL-101-ED-PW is consis-
tent with as-prepared MIL-101-Cr given the expected effect of
the PW anions on peak intensities (Figure 1 and Figure S1).37

These results indicate retention of the framework structure
after PSM. The FT-IR spectra of dehydrated MIL-101-ED and
MIL-101-ED-PW exhibit N−H stretching bands at 3320 cm−1,
aliphatic C−H stretching vibrations at 2950 cm−1, and C−N
stretching bands at 1054 cm−1 (Figure 2),56 suggesting that

EDs were indeed grafted to MIL-101-Cr and retained after the
second PSM process. In addition, W−O−W and WO
stretching bands at 815 and 951 cm−1, respectively, for MIL-
101-ED-PW correspond to the characteristic bands of PW
(Figure 2).66 The presence of the amino groups and PW anions
was also supported by XPS analysis. XPS peaks at 134.7, 36.1,
and 38.2 eV from P5+(2p1/2), W

6+(4f7/2), and W6+(4f5/2),
67

respectively, further support encapsulation of PW molecules
into pores of the MOF (Figure S2). N2 sorption isotherms
(Figure 3) revealed the decrease in BET surface area following
stepwise conversion of MIL-101-Cr (BET surface area of 2977
m2 g−1) to MIL-101-ED (1769 m2 g−1) to MIL-101-ED-PW
(403 m2 g−1). To verify that the PW anions had indeed diffused
into the structure but not on the surface, a thin section
containing MIL-101-ED-PW crystals was analyzed by high-
resolution transmission electron microscopy with an instrument
equipped with an energy dispersive X-ray spectrometer

Scheme 1. General Stepwise Strategy for Creating DPF-
MOFsa

a(a) Start with a MOF with two types of cages. (b) Use PSM to
introduce functionality (blue spheres) into both cages. (c) Size
selective PSM (green spheres) involving the large cage only. (d) Use
PSM (brown spheres) involving the small cage only.

Scheme 2. Illustration of the Route for Synthesizing Acid/
Base DPF-MOF MIL-101-ED-PW

Figure 1. PXRD of MIL-101-Cr (simulated), MIL-101-Cr (as
synthesized), MIL-101-ED, and MIL-101-ED-PW.

Figure 2. FT-IR spectra of dehydrated samples under vacuum (left)
and FT-IR spectra of as-synthesized samples with KBr tablets (right):
MIL-101-Cr (black), MIL-101-ED (red), and MIL-101-ED-PW
(blue).
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(HRTEM-EDS) (Figure S4). The data revealed a uniform
distribution of PW in three random samples. In addition, the
content (Table S1) of W/Cr in each layer after XPS reduction
treatment is similar, further suggesting the uniform distribution
of PW anions throughout the inner pores of MIL-101-ED-PW.
The successful creation of DPF-MOF was also proven by its

performance in the cascade reaction. As can be seen from Table
S2, MIL-101-ED-PW can catalyze a cascade reaction involving
acid-catalyzed deprotection and a subsequent base-catalyzed
Henry reaction.40 The PW in the large cage will catalyze the
first step of the reaction, and the ED base sites in the small pore
are proposed to catalyze the second step of the reaction.
Control experiments with MIL-101-PW or MIL-101-ED
further illustrate the advantage of DPF-MOF compared with
the monofunctional ones.
Extension of the Pore Size-Controlled Strategy in

Creating a DPF-MOF. Our strategy of selective nanospace
decoration can also be extended to functional organic
molecules to facilitate the creation of a DPF-MOF family
with a greater diversity of functionalities. This was accom-
plished by window size-controlled immobilization of tetrasul-
fophthalocyanine (Zn) (TSP) (molecular dimensions of ∼1.5
nm × 1.5 nm) into the large cage of MIL-101-Cr,68 thereby
affording MIL-101-ED-TSP following procedures similar to
those used earlier (Scheme S2a and Figures S5−S7). MIL-101-
ED-TSP was also found to exhibit two functional cages because
it can also catalyze the deacetalization−Henry cascade reaction
to form 3 (Table S2, entry 4), further highlighting the
versatility of our strategy.
Control Experiments Concerning Size-Controlled

Selective Decoration. To illustrate the effectiveness of our
strategy based on the pore size control, we have conducted a
control experiment. An addition of excess PW and TSP during
the encapsulation process did not quench the activity of the
catalyst as evidenced by our observation that the performances
of MIL-101-ED-PW (excess) and MIL-101-ED-TSP (excess) in
the deacetalization−Henry cascade reaction are comparable to
those of MIL-101-ED-PW and MIL-101-ED-TSP (Table S2,
entries 5 and 6, respectively, and Scheme 3a). In contrast, the
excess 1,5-naphthalenedisulfonic acid (NDSA), which possesses
similar acidic functionality but much smaller molecular
dimensions (∼0.9 nm × 1.0 nm), resulted in a loss of activity
for MIL-101-ED-NDSA (Table S2, entry 7, and Scheme 3b).
We attribute this behavior to the formation of ion pairs at the
basic sites. These observations further emphasize that two
distinct types of functional cages can be created by the pore

size-controlled stepwise strategy presented herein. This
contrasts with mesoporous silica materials such as SBA-1569

that, without pore size control, cannot effectively segregate and
differentiate acidic and basic sites under similar conditions
(Table S2, entries 8 and 9, respectively, and Scheme 3c).

Further PSM of the Small Cages in MIL-101-NH2 by
the Pore Size-Controlled Strategy. To further illustrate the
versatility of our strategy for creating DPF-MOFs with
adjusting functions for small cages, we prepared MIL-101-
NH2,

62 a variant of MIL-101-Cr in which amino groups are
grafted onto the phenyl ring of the terephthalate linker ligand.
PW anions were encapsulated into the large cage of MIL-101-
NH2 using procedures similar to those detailed above. The
remaining amino groups in the small cage were then reacted
with bromoethylamine to afford MIL-101-NHCH2CH2NH2-
PW (Scheme S2b and Figures S8−S10). Catalytic studies
revealed that two functions were successfully modified. This
can be verified because MIL-101-NHCH2CH2NH2-PW cata-
lyzes the cascade deacetalization−Henry reaction, whereas
MIL-101-NH2-PW catalyzes only the first step of the cascade
reaction (Table S2, entries 10 and 11).

Trapping of a Reaction Intermediate. A model reaction
for trapping the intermediate of the cascade reaction was
conducted using an amine-Lewis acid system (Figure 4). The
amine-catalyzed reaction often generates a mixture of nitro-
alkene and dinitro products, the latter being the product of
further addition of nitroalkane. A Lewis acid catalyst such as
Ni(II)-bis[(R,R)-N,N′-dibenzylcyclohexane-1,2-diamine]Br2
(Ni-BDCDBr) can trap the nitroalkene intermediate and direct
it toward the formation of a second product, thus preventing
the generation of the dinitro product.70 Ni-BDCDBr (∼1.4 nm
× 1.6 nm)71 was encapsulated into the larger cage of MIL-101-
ED as validated by PXRD, IR, N2 sorption, and XPS (Scheme
S2c and Figures S11−S14). Catalytic studies revealed that MIL-
101-ED-Ni-BDCDBr can indeed trap the nitroalkene inter-
mediate and form the corresponding Michael addition product.
Specifically, MIL-101-ED-Ni-BDCDBr catalyzes reaction of
benzaldehyde, nitromethane, and malononitrile to form
compound 5 in 91% yield but without the formation of 4. In

Figure 3. N2 adsorption−desorption isotherms for MIL-101-Cr
(black), MIL-101-ED (red), and MIL-101-ED-PW (blue).

Scheme 3. Stepwise PSM Approach for Constructing DPF
Materials with or without Pore Size Controla

a(a) Affords DPF-MOFs because of the order and type of reagents
used in the process. (b) Monofunctional materials without pore size
control because of the small reactant size. (c) Monofunctional
materials without pore size control because of the larger windows size
for small functional molecules.
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contrast, mixtures of ED and Ni-BDCDBr lead to deactivation
of Ni-BDCDBr. This can be attributed to the strong chelating
effect of ED. The Michael addition product was not detected
under such circumstances. Therefore, DPF-MOFs with differ-
ent functions can be used not only for cascade reactions but
also for trapping an intermediate and controlling the reaction
route. To the best of our knowledge, this is the first report of
reaction intermediate trapping in a functionalized MOF.
Size Selectivity Experiments and Recycling of DPF-

MOF. To verify that reactions occur within the DPF-MOF
(pore catalysis) instead of on the exterior surface (surface
catalysis), size selective catalysis experiments were performed
on MIL-101-ED-PW. The Knoevenagel reaction of benzalde-
hyde and malononitrile in the presence of MIL-101-ED-PW
was completed within 3 h, whereas almost no Knoevenagel
products were observed if a larger substrate such as
diphenylmethanone was used (Table S4 and Figure S15).
Additionally, the heterogeneous nature of MIL-101-ED-PW
was supported by the observation of no significant loss of
activity after three cycles (Table S2, entry 12). Moreover, the
fact that the reaction did not proceed after hot filtration is
consistent with no leaching of active species and a
homogeneous reaction. The content of acid (W = 26.67%)
and basic (N = 4.09%) sites after three cycles of catalysis was
consistent with the as-synthesized ones with W (28.06%) and
N (4.27%) confirmed by elemental analysis and ICP experi-
ments. In addition, the PXRD peak matches that of the as-
synthesized samples after reaction well, indicating the intact
integrity of the structure (Figure S18).

■ CONCLUSIONS
In summary, we herein demonstrate pore size-controlled
selective decoration of MOF cages through a stepwise PSM
process that creates a DPF-MOF comprised of two different
types of functional cages. This facile PSM strategy controls the
functionalities of the large and small cages of MIL-101-Cr. The
stepwise PSM strategy might also be applied to construct “two-
in-one” functional MOF materials for other applications in gas
storage, separation, sensing, etc. Ongoing work in our
laboratories includes the exploration of new functionalities in
DPF-MOFs for applications in catalysis and small molecule
recognition as well as the development of new strategies for
introducing bi- and multifunctionalities into MOFs.

■ EXPERIMENTAL SECTION
Synthesis of MIL-101-ED-PW. A methanolic solution (10 mL) of

phosphotungstic acid (0.15 g, 0.17 mmol) was added to the water
solution (30 mL) of MIL-101-ED (0.3 g, 0.45 mmol), and the mixture
was stirred at room temperature for 1 h. The product was recovered by
filtration, washed with methanol and hot water, and then dried at room
temperature. Element analysis: C, 26.47%; H, 2.21%; N, 4.27%.
Element analysis after three cycles: C, 27.17%; H, 2.35%; N, 4.09%.
ICP: Cr, 12.37%; W, 28.06%. ICP after three cycles: Cr, 11.64%; W,
26.67%.

Synthesis of MIL-101-ED-TSP. The same synthetic procedure
that was used for MIL-101-ED-PW was used except that
phosphotungstic acid was replaced with tetrasulfophthalocyanine
zinc. Element analysis: C, 42.23%; H, 3.26%; N, 6.32%. ICP: Cr,
14.10%; Zn, 1.85%.

Synthesis of MIL-101-ED-Ni-BDCDBr. The same synthetic
procedure that was used for MIL-101-ED-PW was used except that
PW was replaced with Ni-BDCDBr and CH2Cl2 was used as the
solvent. Element analysis: C, 46.58%; H, 4.26%; N, 6.79%. ICP: Cr,
14.33%; Ni, 1.95%.

One-Pot Deacetalization−Henry Reaction. A mixture of
benzaldehyde dimethyl acetal (1 mmol), nitromethane (5 mL), and
catalyst [50 mg, contained free ED (4.2 mg) and PW (18 mg)] was
kept at 90 °C under magnetic stirring. The reaction mixture was then
stirred under a nitrogen atmosphere for 24 h, and the sample mixture
was removed with a filter syringe and evaluated by high-performance
liquid chromatography (HPLC) to determine the yield. The strong
peak for an equal amount reactant and product was used to calibrate
the yield.

One-Pot Deacetalization−Knoevenagel Reaction. A mixture
of benzaldehyde dimethyl acetal (1 mmol), malonitrile (2 mmol), and
50 mg of catalyst in toluene (25 mL) was kept at 90 °C under
magnetic stirring. The reaction mixture was then stirred under a
nitrogen atmosphere for 3 h, and the sample mixture was removed
with a filter syringe and evaluated by HPLC to determine the yield.
The strong peak for an equal amount reactant and product was used to
calibrate the yield.

Experiment with MIL-101-ED-Ni-BDCDBr as a Catalyst for
Trapping the Intermediate. A mixture of catalyst (50 mg),
benzaldehyde (1 mmol), nitromethane (2.5 mL), malononitrile (1.2
mmol), and toluene (2.5 mL) was kept at 110 °C under magnetic
stirring for 24 h. The sample mixture was removed with a filter syringe
and evaluated by HPLC to determine the yield. The strong peak for an
equal amount reactant and product was used to calibrate the yield.
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